
What is the Gist? Understanding the Use of Public
Gists on GitHub

Weiliang Wang, Germán Poo-Caamaño, Evan Wilde and Daniel M. German
Department of Computer Science, University of Victoria, Canada.

Email: {weiliang,gpoo,etcwilde,dmg}@uvic.ca

Abstract—GitHub is a popular source code hosting site which
serves as a collaborative coding platform. The many features
of GitHub have greatly facilitated developers’ collaboration,
communication, and coordination. Gists are one feature of
GitHub, which defines them as “a simple way to share snippets
and pastes with others.” This three-part study explores how
users are using Gists. The first part is a quantitative analysis
of Gist metadata and contents. The second part investigates
the information contained in a Gist: We sampled 750k users
and their Gists (totalling 762k Gists), then manually categorized
the contents of 398. The third part of the study investigates
what users are saying Gists are for by reading the contents of
web pages and twitter feeds. The results indicate that Gists are
used by a small portion of GitHub users, and those that use
them typically only have a few. We found that Gists are usually
small and composed of a single file. However, Gists serve a wide
variety of uses, from saving snippets of code, to creating reusable
components for web pages.

I. INTRODUCTION

GitHub has become one of the most important forges for
software development. It provides an environment in which
developers can collaboratively develop software using the Git
version control system. GitHub enhances Git with features that
greatly improve collaboration and communication between
developers, including event feeds, pull requests, code reviews,
and an issue tracking mechanism1.

Gist is one of the many features GitHub provides to its
users. GitHub defines2 a Gist as follows:

“Gist is a simple way to share snippets and pastes
with others. All Gists are Git repositories, so they are
automatically versioned, forkable and usable from
Git.”

How a technology is supposed to be used may differ from
how it is actually used. This is especially true for disruptive
technologies where people find innovative uses that were likely
not envisioned by the creators. In a recent study [9], we
described how GitHub repositories are being used for a variety
of purposes, not just software engineering. For example, we
found that repositories are being used to share data (the Tate
Gallery in London uses GitHub to share the metadata of its
entire collection3), and as data storage (the Boston Globe uses
GitHub to host a historical mirror of its newspaper4). Building

1https://github.com/features
2https://gist.github.com/
3https://github.com/tategallery/collection
4https://github.com/bcomdlc/bcom-homepage-archive

on this work, we would like to know how users are taking
advantage of Gists, and if their use is similar to what GitHub
intended, or if they are finding innovative ways to use them.

There has been a recent surge in third-party applications that
support the creation and management of Gists. For example:
the Chrome App GistBox5 helps users save snippets of Web
page text as Gists, as well as organize their collections of
Gists; the sublime-github plugin6 allows users to save snippets
of code as Gists and share their Gists from within the Sublime
editor—gist.el7 is a similar module for Emacs and gist-it8 for
Atom; and jist is a command-line utility for managing multi-
file Gists9. This activity seems to imply that Gists are gaining
popularity among GitHub users, which motivated us to explore
Gists and how developers used them.

In this paper, we present an empirical study of Gists in
GitHub. The goal of this study was to understand what Gists
are and how they are used. To do this, we attempted to address
the following two research questions:

RQ1. What do gists look like?
RQ2. How are users using gists?
To answer RQ1, we searched the Web for evidence of how

users are describing their use of Gists. This included a search
of Websites (including blog posts) and Twitter. To answer
RQ2, we performed a qualitative and quantitative exploratory
study of Gists, including their contents and metadata. For the
quantitative part of the study, we sampled 750k GitHub users
and identified 762k Gists. For the qualitative part of the study,
we performed a manual inspection of a sample of 398 Gists.

II. RELATED WORK AND BACKGROUND

A. GitHub

Among the various distributed version control systems
(DVCS) available, Git has gained the most momentum. The
Git project began in 2005 as a version control system to
coordinate the development of the Linux kernel. Due to
its functionality, portability, efficiency, and rich third-party
adoption, Git has evolved by “leaps and bounds” [14].

There are many Web-based applications that use Git as
a back end to host free and open source projects. These

5http://www.gistboxapp.com/
6https://github.com/bgreenlee/sublime-github
7https://github.com/defunkt/gist.el
8https://atom.io/packages/gist-it
9http://charlesleifer.com/blog/jist-a-command-line-utility-for-managing-

multi-file-multi-directory-private-gists/



applications provide a convenient way for developers to create
repositories, clone existing projects, and commit their con-
tributions [14]. These applications also emphasize the social
aspects of software engineering.

With more than 8.5 million users10, GitHub has become
one of the most popular of these applications. GitHub is an
environment that combines social networking with distributed
version control to enhance communication and coordination
among software developers [5].

B. Recent Research on GitHub

The development of GitHub has prompted research from
many different angles. GitHub stores data on developers’
projects, their contributions to other projects, and their in-
teractions with other developers. Some researchers are trying
to help employers by analyzing the profiles and activities of
developers on GitHub [2,11,16].

Other researchers have focused on the source code in project
repositories. Bissyande et al. [1] took advantage of the rich
data on GitHub, using lines of code, development teams, and
issues that arose as measurements of popularity, interoperabil-
ity, and impact of programming languages. Other researchers
have tried to discover patterns in how developers asses each
other and find collaborators [10,12,13], herd behaviour [3], and
the relations between behaviour on GitHub and other Q&A
Websites such as StackOverflow11 [15]. In [9], we empirically
analyzed the contents of repositories and discovered that
GitHub is used for more than software engineering. While
GitHub is meant to be a social coding platform, we discovered
that a lot of activity within it is driven by developers who
are working on their own. However, we have not found any
scientific studies focusing on GitHub Gists.

C. Related Tools

There are other snippet management tools for software
developers similar to GitHub’s Gists, such as pastebin12 and
snipt13. Their existence seems to imply that the sharing and
management of snippets is a growing concern among software
developers. However, GitHub is the only one that stores the
snippets using version control.

D. The Features of Gists

Gists are small snippets of code or text that are stored using
Git. Wikipedia provides a good summary of the benefits of
such an integration:14

“Gist builds upon that idea by adding version
control for code snippets, easy forking, and SSL
encryption for private pastes. Because each ‘Gist’
is its own Git repository, multiple code snippets can
be contained in a single paste and they and be
pushed and pulled using Git. Further, forked code

10https://github.com/about/press
11http://www.stackoverflow.com/
12http://pastebin.com/
13https://snipt.net/
14http://en.wikipedia.org/wiki/GitHub#Gist

can be pushed back to the original author in the
form of a patch, so pastes can become more like
mini-projects.”

In addition, GitHub makes it easy to create Gists. It also
includes a powerful Web-based editor to modify them—it can
completely isolate users who may not want to use Git. It also
supports the ability to post comments on a Gist, and provides
a Web service to retrieve Gists that typesets the contents so
that they are ready to be embedded in a Web page.

III. RESEARCH QUESTIONS AND METHODOLOGY

Our study focused on answering the following two research
questions

RQ1. What do gists look like? We surveyed the contents
and metadata of Gists to get a picture of how they
are used and whether users collaborate around them.

RQ2. How are users using gists? We searched Web pages
(including blogs) and Twitter to discover how users
describe their use of Gists. We combined this informa-
tion with the results of the previous research question
to get a full picture of how Gists are being used.

Our methodology can be summarized as a mixed methods
approach [6] that combines both quantitative and qualitative
analysis on a collection of data. The study was composed of
three main components, with the first two being used to answer
RQ1, and the third to answer RQ2.

1) A quantitative analysis of Gist metadata and contents,
based on the Gists collected from a large portion of
GitHub users.

2) A qualitative analysis of a sample of Gists based on a
small, random sample of the Gists collected. We inferred
the purpose of a Gist by inspecting the contents of each
file that composed the Gist.

3) A qualitative analysis of users’ comments about Gists,
based on search results from Websites and Twitter.

A. Data Set
In July 2014, we downloaded the metadata and contents of

a large sample of Gists using the following method. We started
by downloading the list of GitHub users from the GHTorrent
project [8], which contained 2.9M. GHTorrent contains big
part of the activity starting from 2012. We filtered these users
to identify true users (GHTorrent contains both organizations
and users, see [9] for details); This left us with 2.4M users.
From this list of 2.4 million users, we randomly sampled
750k (31%). For each of these 750k users, we downloaded
the metadata of all their gists (if they had any). Only 103k
users had at least one gist. In total, these 103k users had
762k Gists. We also proceeded to download the first 618k
Gists. This data is available in the replication package at
http://turingmachine.org/2015/gists.

Table II summarizes the metadata associated with a Gist. As
Gists use Git for their underlying storage mechanism, users
can fork Gists, and modifications to Gists are recorded as
commits. GitHub allows any user to make comments on a
Gist.



Description Size
Total population of users 2,407,094
Sampled users 750,000

Users with Gists 103,092
Gists of sampled users 762,034

Gists downloaded 618,393

TABLE I: Sample used in this study.

Description Size
Gist unique identifier Unique to all Gists in the system
Description As described by its owner
Files count Number of files in Gist
Forks count Forks of Gist made by other users
Commits count Number of commits pushed to Gist
Commits history Number of additions and deletions

pushed in every commit
Comments count Number of comments on Gist by

other users
Language List of languages of each file

in Gist
Gist size
Creation date
Last modification date

TABLE II: Description of the Gist metadata.

Gists can be composed of one or more files. Each of the files
in a Gist contains metadata, which is described in Table III.
The MIME type attribute documents the type of file using the
MIME notation [7]. We also computed metrics on Gists that
consisted of text files: number of lines using the wc UNIX
command; lines of code per file (for source code files) using
SLOCcount15.

Description Size
Filename
MIME type Type of file using MIME notation
Language For source code, its programming language

(based on its extension)
Size In bytes
Lines* Number of lines in Gist
SLOCS* Number of lines for source code files

TABLE III: Description of the file metadata in Gists. Those
marked with * were computed from the downloaded Gists.

B. Manual Analysis of Gists

To understand the content of Gists, we randomly sampled
398 Gists among the ones already downloaded for our quan-
titative analysis. To abstract recurring patterns, we extracted
themes from each Gist’s content following Creswell’s guide-
lines [4] for coding. We started reading through the Gists to
obtain a general idea of their content and then grouped the
contents into categories. Because a Gist is composed of one
or more files, we considered two strategies to segment them:
analyze the content type of a Gist as a whole, and determine
the relationships between the files in a Gist. In the first case,
a Gist could be labelled with one or more terms.

Three researchers performed the manual analysis to cross-
validate the coding process and minimize potential bias.

15http://www.dwheeler.com/sloccount/

C. Analysis of Users’ Discussions Regarding Gists

We also considered the information in Web pages and
Twitter postings that described how Gists are used. We looked
for the most relevant Web pages explaining the use of Gists—
either official or unofficial—as well as the most recent com-
ments at the time we were conducting the study.

1) Web Pages: To find relevant Web pages, we queried the
Yahoo, Bing, Ask, and Duck Duck Go search engines. We
used a script to scrape the first page of links provided for
the following queries: “What is a GitHub Gist”; “How do I
use GitHub Gists”; and “What are GitHub Gists”. Once we
collected the links, we manually read each Web page and made
note of the suggested uses.

2) Twitter Postings: To find relevant Twitter postings
(colloquially known as “tweets”), we performed the query
“GitHub Gists” using the Twitter Web Search interface. To
minimize profile bias on Twitter, we performed the query
anonymously, in a private Web browser session with no cook-
ies. We narrowed the search to 6 months, from January 1st to
July 31st, 2014, which resulted in a collection 492 tweets. We
manually read each tweet and—when appropriate—followed
the links pointed there, and made note of the usages suggested.

IV. RESULTS

A. RQ1: What do gists look like?

When considering the results in this section, it is important
to keep in mind that this study only pertains to public Gists (we
are not able to mine private Gists). GitHub does not impose
any restrictions on the number of private Gists a user can
have (compared to private repositories which are available only
to paying users). Hence, if we repeated this study on private
Gists, the results could be different.

1) Users and Their Gists: Gists are used by a small
proportion of users. As Table IV shows, 14% of users have at
least 1 public Gist. Because the population of users with no
public Gists is so large, our remaining analysis will concentrate
on users with at least 1 public Gist (103k).

Users Count %
Having at least one public Gist 103,092 13.8%
Having no public Gists 645,368 86.2%

TABLE IV: Comparison of users with at least one Gist and
those who do not have any.

For users with public Gists, the distribution of the number
of public Gists per user is shown in Figure 1. The median
number of public Gists is 3 (quartiles 1 & 10). Only 4% of
users have 30 or more public Gists.

We hypothesized that the number of Gists a user has
depends on their use of GitHub—users with more repositories
or commits are more likely to use Gists. For this reason, we
calculated the correlation between the number of Gists and
other activities; We used the set of all users in the sample, not
only those with Gists. The correlation between the number of
commits a user has performed and the number of Gists they



0.4

0.6

0.8

1.0

1 2 3 5 10 15 20 25 30

Number of Gists per User

C
u

m
m

u
la

ti
ve

 P
ro

p
o

rt
io

n
 o

f 
g

is
ts

Fig. 1: Accumulated proportion of Gists per user.

have is 0.2, between the number of repos and the number of
Gists is 0.31, and between the days since the user registered
and the number of Gists they have is 0.37. In all these cases,
the p-value was significantly smaller than 0.001. While the
correlations are weak, they suggest that as people use GitHub
more, they are more likely to use Gists.

2) What Are the Contents of Gists: We quantify the con-
tents of Gists in several ways, starting with files per Gist. In
theory, a Gist is a Git repository, and as such, a Gist can
contain any number of files. Table V shows the accumulated
distribution of files per Gist: 86.8% of Gists contain a single
file, and 98.5% of them contain at most 4 files. Very few
(0.02%) had more than 10 files.

Files Gists %
0 148 0.0%
1 661,565 86.8%
2 53,041 7.0%
3 24,108 3.2%
4 12,588 1.6%

>=5 10,584 1.4%

TABLE V: Breakdown of Gists by the number of files they
contain.

GitHub documents the contents of Gist files in two ways:
by MIME type, and by the associated programming language
or data format (if applicable).

The breakdown by MIME type is depicted in Figure 2. As
it can be seen, while the text/plain category dominates (many
source code files fall into this category—see below), there
is a wide variety of file types. Some of the most common
types include images (PNGs are 9.3%, GIFs 0.8%, and JPEGs
0.3%), HTML files (4.7%), JSON data (1.5%), and CSS
(2.1%). Some programming languages are identified as MIME
types (php, sh, ruby, python, javascript), but many others are
not (they are included in the text/plain category).

GitHub identifies the language of the file based on its
extension. This includes source code files, data files (such as
JSON and XML), and some text files (such as Markdown and
HTML). In our sample, 71% of Gists contained at least 1 file

application/javascript

application/json

application/octet−stream

application/x−httpd−php

application/x−java−archive

application/x−java−serialized−object

application/xml

application/x−msdos−program

application/x−perl

application/x−python

application/x−ruby

application/x−sh

image/gif

image/jpeg

image/png

text/css

text/html

text/plain

text/x−coffescript

text/x−yaml

zOther types

0.0 0.1 0.2 0.3 0.4

Proportion of files

M
IM

E
 t

y
p
e

Fig. 2: Proportion of files by MIME type.

classified in this manner, representing 260 different languages.
Figure 3 shows the distribution of the top 30 languages.
The top 5 programming languages are JavaScript (12.9%),
Ruby (11.8%), PHP (10.4%), Python (7.1%), and Shell script
(6.3%). The next 4 are markup languages: Markdown (5.9%),
HTML (5.7%), XML (4.4%), JSON (2.6%). Note that the
remaining 230 languages account for 7.5% (the “Other” cate-
gory).

When analyzing Gists, we first quantify them by size.
Figure 4 shows the distribution of the size of files in Gists
using three metrics: bytes, lines, and SLOCs. In terms of
bytes, the median size is 920 bytes (quartiles 374 & 2339
bytes). There exist some outliers: 0.06% of files are larger
than 1 megabyte. For text files, we counted the number of
lines per file: the median number is 22 lines (quartiles 9 &
54 lines). Using SLOCcount, we computed the number of
SLOCs in each file. SLOCcount also identified 33 different
programming languages (26.4% of files): the median was 18
SLOCs (quartiles 8 & 39).

3) Activity: Because Gists are stored using Git version
control, we can trace their evolution (their commits) and the
collaboration around them (the number of users who have
forked them). In terms of commits, most Gists have very few:



C

C#

C++

Clojure

CoffeeScript

CSS

Diff

Emacs Lisp

Go

Groovy

Haskell

HTML

HTML+ERB

Java

JavaScript

JSON

Markdown

Objective−C

Perl

PHP

Python

R

Ruby

Scala

SCSS

Shell

SQL

VimL

XML

YAML

zOther languages

0.00 0.05 0.10

Proportion of files

L
a
n

g
u

a
g

e

Fig. 3: Proportion of source code files by programing lan-
guage.

62.9% had a single change, and 92.8% had 2 to 5 commits.
The distribution of commits is shown in Figure 5. In terms of
forks, only 5.1% of Gists have been forked once, and less than
0.8% have been forked 3 or more times (as shown in Table VI).
There are, however, 23 Gists that have been forked more
than 100 times. One feature that is different between regular
repositories and Gists is that any user can add a comment
to a Gist. As with commits and forks, very few Gists have
comments (as seen in Table VII): only 6.9% received 1 or
more comments.

Number of forks Gists %
0 723,833 94.9%
1 28,262 3.7%
2 4,914 0.6%

≥ 3 5,025 0.8%

TABLE VI: Forks per Gist.

4) Manual Analysis of the Contents of Gists: We manually
inspected 398 randomly sampled Gists. We segmented the
contents of Gists according to two strategies: we analyzed
the content of the Gist as a whole, and then analyzed the
relationships between the files within the Gist.

Comments per Gist Gists %
0 709,098 93.1%
1 33,603 4.4%
2 8,938 1.2%

≥ 3 3726 1.3%

TABLE VII: Comments per Gist.

a) Content Type: We observed that Gists are used for
multiple purposes, not only for sharing code snippets. We
categorized the Gists as source code (Code), any other form
of text (Note), or both—for those cases when a Gist contains
multiple files and at least one file each (Code or Note).

The breakdown of this first categorization is shown in
Table VIII. There is a predominance of source code among
Gists, although other types of text (Note) cannot be dismissed.
The number of Gists that combine both types are low, which
is expected given that most Gists contain a single file (see
Table V). There are, however, 5 Gists that were classified
differently by each researcher (Not classified).

Content type Count %
Code 290 72.9%
Note 92 23.1%
Both 11 2.8%
Not classified 5 1.3%

TABLE VIII: Breakdown of Gists by major categories of
content type.

As seen in Table VIII, code is the most prominent use of
Gists. However, we also found other uses, such as system
configuration information, sharing public cryptographic keys,
generic letters, or even a menu for—apparently—a restaurant.
One Gist was written entirely in Japanese, for which we used
an online translation tool to understand its content. Thus,
GitHub Gists are not limited to western languages.

At the same time, we determined additional categories to
better describe the purpose of a Gist given its content. The
resulting categories are (in alphabetical order):

• Blog: Technical content in narrative format.
• Class: Definition of one class or module (source code).
• Command: A short command to be run in a shell (source

code).
• Configuration: Configuration files used to build code, or

for any other purpose.
• Data: Data stored in JSON, CSV, or other format.
• Diff: Differences between files or different versions of

the same file.
• Documentation: Explanatory text about a piece of code

or technology.
• Function: Definition of one or several functions (source

code).
• Fragment: Partial piece of code (that is not a function nor

a class), text, or command.
• Log: System log files, output of a program, and/or error

messages.
• Non-technical: Notes without any technical content.



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 100 200 1k 2k 10k 50k

Size of files in bytes (log scale)

C
u

m
m

u
la

ti
ve

 P
ro

p
o

rt
io

n
 o

f 
fi
le

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 25 50 100 200 500 1000

Size of files in lines (log scale)

C
u

m
m

u
la

ti
ve

 P
ro

p
o

rt
io

n
 o

f 
fi
le

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 10 20 100 500

Size of files in bytes (log scale)

C
u

m
m

u
la

ti
ve

 P
ro

p
o

rt
io

n
 o

f 
fi
le

s

Fig. 4: Size of files in Gists in bytes, lines, and SLOCs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 7 10 20

Number of commits

C
u

m
m

u
la

ti
ve

 P
ro

p
o
rt

io
n
 o

f 
G

is
ts

Fig. 5: Accumulated distribution of the number of commits
per Gist.

• Template: Coding example or text with patterns.
• Test: Code or text used to test a program or system.

During the categorization process, we observed that the
MIME type of a file might not be enough to understand
a Gist. For example, the content of an HTML page could
contain documentation, embedded JavaScript code, or be used
as input for another program. We also observed that a Gist
can be segmented in multiple categories, especially the Gists
composed of multiple files.

Table IX contains the distribution of the more detailed cate-
gories based on the content of Gists. As a Gist can be classified
in multiple categories, the sum of them do not represent 100%
of Gists. Morever, we observed that 81 (20.35%) of the Gists
were complete scripts, modules or programs. Hence, they are
not represented in any of the categories.

b) When a Gist Has More than One File, They Are
Related: A Gist is composed of one or more files. When a Gist
has multiple files, we observed that they appear to be related.
We used the following labels to categorize these relationships:

Content type Count %
Function 75 18.8%
Fragment 64 16.1%
Data 43 10.8%
Class 43 10.8%
Log 37 9.3%
Configuration 37 9.3%
Test 34 8.5%
Command 27 6.8%
Documentation 22 5.5%
Template 20 5.0%
Blog 14 3.5%
Non-technical 8 2.0%
Diff 7 1.8%

TABLE IX: Distribution of Gists by specific content type.

• Attachment: One file contains configuration or informa-
tion of another file.

• Generation: One file is the input or output of another file.
• Reference: One file refers to another file, calls functions

or methods defined in another file.
• Independent: Files in the Gist are independent or the same

file is repeated.
• Single File: The Gist contains only one file.
• Test: One file is used to test the code of another file.

As shown in Table X, most sampled Gists contained only
one file (this is consistent with the results of the quantitative
analysis). For multi-file Gists, they are spread uniformly
among the different categories. Aside from “Single file”, only
“Independent” does not reflect an actual dependency between
files.

Relationship between files of each Gist Count %
Single file 341 85.7%
Independent 19 4.8%
Reference 16 4.0%
Generation 11 2.8%
Test 5 1.3%
Not classified 4 1.0%
Attachment 2 0.5%

TABLE X: Distribution of Gists by relationship between filess



B. RQ2 How are users using gists?

As described in Section III, we answered this question using
two different sources of information: Websites and Twitter
messages. Where appropriate, we provide quotations from the
sampled Websites and tweets to illustrate our findings.

1) Suggested Uses on the Web: To learn more about how
people are using Gists, we searched for “How do I use GitHub
Gists”, “What are GitHub Gists for”, and “What is a GitHub
Gist” using the Yahoo, Ask, Bing, and Duck Duck Go search
engines. Then we made note of the uses discussed on the first
page of results returned for each search.

We found that there were two prominent usage categories
for Gists: official and unofficial. In the official usage category,
the community uses Gists for code sharing, syntax highlighting
and embedding in forums, and for simply storing snippets of
code. GeoJSON map rendering is the only official usage that
was unmentioned in the community.

Overall, we observed that Gists are suggested as a solution
in cases where a full Git repository would be unnecessary.

a) Storing Code: Gists are intended as places to store
snippets of code or other small pieces of information.

“Instead of creating a complete repository for only
1 or 2 files all the time, just add them to a Gist.”16

b) Sharing Code: GitHub used to allow private gists,
which were SSL encrypted to protect the contents; however
it appears that this is no longer an available feature. “Private”
Gists have been replaced with “secret” Gists. Secret Gists have
an obfuscated URL but are otherwise visible to the public—
simply providing the URL of the Gist to team members gives
them access to a wiki-like code sample or snippet. By having
all gists visible by the public, it encourages sharing of code.
For the purpose of this paper, “private” and “secret” gists are
interchangeable.

“Gists are a great way to share your work. You can
share single files, parts of files, or full applications
. . . Every Gist is a Git repository, which means that
it can be forked, cloned, and manipulated in every
way.”17

c) Embedding Code: Gists allow users to embed the
contents into blogs, forums, or any text field that supports
JavaScript. This allows people to focus on their message rather
than on the process of formatting the code in HTML.

“You can embed any Gist in your Web pages with a
line of JavaScript code.”18

d) To-Do Lists: Gists can serve as to-do lists, using the
markdown rendering. The version control system records the
times when tasks are completed, adding functionality at no
cost.

“[To-do lists] help me stay organized, prioritize
my day, and add structure to an otherwise chaotic

16https://www.adayinthelifeof.nl/2010/12/26/github-gists-revisioned-code-
snippets-for-free/

17https://help.github.com/articles/about-gists/
18http://www.labnol.org/internet/github-gist-tutorial/28499/

schedule. I recently discovered what appears to be
the best yet simplest way to keep a to-do list: a
GitHub Gist.”19

e) Web Hosting: The community has developed third-
party applications that can render any HTML code stored in
a Gist, making Gists an effective single-page Website.

“This [Website] is a simple viewer for code examples
hosted on GitHub Gist. Code up an example using
Gist, and then point people here to view the example
and the source code, live!”20

“You can write your HTML, CSS and JavaScript
code in plain text, save the Gist as index.html and
then use bl.ocks.org to serve the rendered version
of that HTML Web page as it should appear in the
browser.”21

f) Editing Text: The markdown rendering in Gists makes
them a simple Web text editor.

2) Uses of Gists Reported on Twitter: We analyzed 6
months of Twitter messages that contained information on
GitHub and Gists. We filtered the postings that described or
linked usages of Gists, then we categorize them. The resulting
categories are described below.

a) Sharing Content: GitHub Gists is used to share snip-
pets of code or any form of text. Although it is one of the
purposes featured by GitHub regarding to Gists, we observed
people advertising Gists frequently in Twitter.

“Gists - https://gist.github.com/ Gist is a simple way
to share snippets and pastes with others. All gists are
Git repositories.”22

We also observed that a collection of related Gists can
become a repository over time. For example, we observed
8 tweets23 linking to a repository containing an introduction
to Monad Transformers24. The repository was originally a
collection of more than 30 Gists with snippets that evolved
into a repository25.

b) Saving Learning Outcomes: Gists can be used to
aggregate disperse information technical or record technical
tips and learning outcomes tips. For example, a tweet26 linked
to a Gist27 containing a compilation of business models used
by different Internet companies. The Gist is a compilation list
of information gathered from a discussion in Hacker News—
a social news web site. Although the tweet looks like a call
for moderation on how people used Gists, the linked tweet
had attracted a considerable attention. At the time of this
study, it had received 24 comments, 35 revisions, 201 forks,

19http://lifehacker.com/why-a-github-gist-is-my-favorite-to-do-list-
1493063613

20http://bl.ocks.org/
21http://www.labnol.org/internet/github-gist-tutorial/28499/
22https://twitter.com/sstranger/status/493436023729586176’’
23E.g. https://twitter.com/philadev/status/490531557816692738
24https://github.com/kqr/gists/blob/master/articles/gentle-introduction-

monad-transformers.md
25https://github.com/kqr/gists
26https://twitter.com/pessimism/status/492255854163689472
27https://gist.github.com/ndarville/4295324



and 1,633 stars. In comparison to the other results—seen in
sections IV-A2, IV-A3, and IV-A4)—this Gists is an outlier
because it is not related to code (23.1%), it has more than 3
comments (1.3%) and more than 3 forks (0.8%).

c) Collaboration: Gists also act as a tool to help people
with collaboration. People can put their work in a private Gist
and every member can commit to it, as is inferred from the
following tweet:

“Every once in a while I think I wish I could “draft”
a Pull-request, issue, or comment on GitHub, then I
remember that private Gists exist.”28

d) Embedding Content in Blogging Platforms: One of
the largest blogging Websites, WordPress, supports the em-
bedding of Gists29. Many other blogging platforms, such as
Medium, also support Gist embedding.30

“Thinking of migrating all of the code for my blog
posts into @GitHub Gists like [url] - Would that be
valuable to you?”31

e) Version-controlled Lists: Some users have come up
with non-trival ways to make full use of Gists. One good
example is a popular blog being widely tweeted on Twitter.
Authored by Carl Sednaoui32, it teaches people how to main-
tain a to-do list using a private GitHub Gist.

“GitHub Gists are a great way to keep version-
controlled lists (in this case, US states I’ve vis-
ited). . . ”33

V. DISCUSSION OF RESULTS

With Gists, GitHub provides a simple way to create and
version small files. Among the users we sampled, only 1 in 8
had public Gists, and most of these users had very few in total
(the median number is 3). Our results show that someone’s use
of Gists is correlated with the length of time they have used
GitHub. As such, we expect that the use of Gists increases
significantly over time. It is also likely that there is a critical
mass effect: As more people use and talk about Gists, others
will follow suit.

As GitHub expected, most Gists are very small: 86.8% have
only 1 file and the median size is 920 bytes (22 lines for text
Gists). However, we found that their contents vary widely.
While a large proportion contain source code, people are also
using Gists for binary files (such as images) and data files
(such as XML and JSON). Based on our qualitative analysis
and manual sampling of Gists, the following themes have
surfaced.

28https://twitter.com/nuclearsandwich/status/249213040610910209
29http://crunchify.com/how-to-embed-and-share-github-gists-on-your-

wordpress-blog
30https://medium.com/the-story/yes-we-get-the-gist-1c2a27cdfc22
31https://twitter.com/jessealtman/status/456390107952467968
32http://carlsednaoui.com/post/70299468325/the-best-to-do-list-a-private-

gist
33https://twitter.com/dliggat/status/458090816930848768

A. Gists Are Mostly Used to Store Source Code but Other
Formats Are Frequently Used Too

As expected, Gists are mostly used to store snippets of
source code. Our manual analysis showed that they cover a
wide range of uses: shell scripts, class templates, complete
functions, fragments of functions, etc. Because most do not
evolve, we hypothesize that these snippets are being archived
for future reference. In addition to source code, Gists also
contain other information formats. The Markdown markup
language is the fourth most common language, suggesting
that storing snippets of text is also an important use of Gists.
Similarly, we found that almost 10% of Gists contain images.
Gists are also used to store logs, diffs, JSON data, and test
data.

B. Gists Are Used to Create Reusable Web Components

GitHub provides a mechanism to dynamically embed Gists
into Web pages. When a Gist is embedded, it is nicely typeset
(according to the syntax of its language) into HTML. This
includes Markdown and Org, both markup languages for text
designed to be converted into HTML. When a Gist is rendered,
it is bound with a box and text that identifies it as a Gist
hosted in GitHub. However, this box can be removed. For
example, gist-embed34 enhances GitHub’s rendering of Gists
by removing any signs that the content comes from GitHub.
Gists can act as dynamic “includes” in Web pages (whether
formatted text or source code). Other formats that do not
require typesetting (such as images and CSS) are easier to
reuse since they do not need to be embedded. For example,
if one wants to host an image in GitHub, all that is needed
is to create a Gist and then refer to this Gist using the
GitHub URL that retrieves the original content (the “raw”
Gist). This is likely one of the reasons that we found that
almost 10% of Gists are images, and might explain why 8%
are JavaScript snippets. Dynamically using Gists in Web pages
(either embedded or in raw format) has three advantages:

1) For languages that must be converted into HTML (such
as Markdown or source code), it allows authors to ignore
the complexities of authoring HTML, and concentrate on
creating content.

2) It allows the reuse of components for the Web. The same
Gist can be reused multiple times.

3) It isolates the evolution of the component from the use of
the component. Because Gists are used dynamically (in
raw format, or embedded and rendered) by Web pages,
they can be updated without having to change the Web
page that uses them.

The evidence we have collected suggests that this is an
important use of Gists, especially for Web pages that include
source code. Converting source code to a nicely typeset HTML
would require the use of extra tools. By hosting the code
snipped as a Gist in GitHub, the job of rendering the code
into HTML is no longer the responsibility of the user. As a
result, it is not only easier to embed source code into a Web

34https://github.com/blairvanderhoof/gist-embed/blob/master/gist-embed.js



page, but the source code looks good. It is hard to evaluate the
impact of this feature, but it is likely this rendering has a direct
impact on the readability of Web pages that present source
code—compared to simply using a pre-formatted HTML tag
(<pre>), for example.

C. Gists Are Used as an Enhanced Online Document Editing
System That Adds Version Control Features

With Gists, GitHub provides a lightweight method to edit
documents with the full benefits of version control. GitHub
isolates the user from the creation and editing of Gists from
Git. A user only needs a Web browser to gain all the benefits
that Git provides for tracking changes (when a change is made,
who made the change, and what the change was). We have
found evidence that Gists are used for this purpose, even
though it is not common (less than 8% of Gists have more
than 6 changes).

D. Users Do Not Collaborate Around Gists

Even though we studied public Gists, we found that they
are mostly personal artifacts. Gists are rarely forked, and the
majority of Gists never change. Unfortunately, GitHub does
not provide statistics regarding how many users visit a Gist,
nor when. Therefore, we cannot create a picture of how useful
Gists are to those who do not fork them or modify them.
It appears as if some Gists serve as an external memory to
their owner, a memory that the owner is happy to share with
everybody (when the Gist is public).

E. Gists Are a Public Scrapbook

As described above, it is very likely that many public Gists
are reusable components, intended to be used by their owner
in the creation of Websites. However, it is also likely that
many Gists are artifacts that the user would like to share with
anybody who finds them useful. In a way Gists are a public
online scrapbook where developers can collect small artifacts
that they find useful, and that can also be potentially useful to
others.

VI. FUTURE WORK

This study is exploratory. We are just scratching the surface
on what Gists are and how they are used. One aspect that
we have not researched is what users think about Gists, and
future work should survey and interview users. For example:
What motivates a person to create a Gist? What do they use
Gists for? What factors determine if a Gist should be public or
private? Do they expect their Gists to be used by others? Our
study was limited to public Gists. Are private Gists different
from public Gists?

Another area that requires future research is exploring how
users find and reuse Gists (which they have not authored).
GitHub provides a search engine for Gists, hence, it expects
users to benefit from the Gists of other users. It could be also
interesting to study further why the scripting languages used in
Gists outnumber other languages such as Java or C; is sharing
snippets easier for scripting languages? is this an indicative of
activity on GitHub projects developed in such languages?

We hypothesize that some Gists are created for future use. In
this case, the user has considered that the snippet is important
enough to be remembered as a Gist. It could be interesting
to see if there are some commonalities among the Gists of
different users. Are different users storing similar Gists?

When a Gist is meant to be reused in the future, such Gist
is a potential reusable component. Gists might provide an
interesting view on reuse at a higher level of granularity than
libraries. It could be interesting to perform clone detection
between Gists and source code in the owners’ repositories
(and other repositories) to find out how reused a Gist is. This
could mean that there are certain functionalities that the user
frequently requires.

GitHub is not the only Website that stores snippets of
code. We need research that explores other repositories and
compares them to the results described herein.

VII. THREATS TO VALIDITY

We triangulated the results of the quantitative and quali-
tative analysis to overcome potential threats to validity. The
quantitative analysis was performed by two researchers, while
the qualitative analysis was performed independently by three
researchers on the same data set, which will reduce the likeli-
hood of erroneous results. In this section, we explain how we
addressed each threat to validity. We are providing an online
package that includes the data we analysed and the results of
the manual analysis at http://turingmachine.org/2015/gists.

A. Construct Validity

The manual categorization of Gists may introduce errors
into the results. The categorization activity involved having
a researcher categorize the Gist by interpreting the contents
of the files contained in the Gist. If a researcher misinter-
preted the contents, it would introduce errors. To minimize
the errors introduced by misinterpretation, three researchers
categorized the 398 Gists in the sample. Each researcher
followed Creswell’s guidelines [4] for coding to minimize the
introduction of subjective bias by the researcher.

An unsuitable sample of the Twitter posts (tweets) and Web
search engine results can also affect the validity of the results
negatively. Twitter returns posts with priority given to more
recently posted results—the results of the query depend on
the time it was executed. This dependence makes the results
transient and likely to change. While search engines are still
susceptible to changes over time, they use a score-based search
algorithm to return the most relevant pages, making the results
less transient. The internal details of each search engine are
unknown to us; it is unclear wether the results returned by
the search engines are representatives samples of the queries
performed. We hope that the qualitative analysis of both
data sets, in conjunction with the qualitative and quantitative
analysis of Gists, reduces distortion in the results.

B. Internal Validity

GitHub provides secret Gists, which are hidden from search
engines and the public forum, but are available to anyone with



the Gist identifier. We performed the analysis on data collected
from public Gists so our results are limited. The contents of
secret Gists may differ from the contents of public Gists.

C. External Validity

This study is exploratory and only applies to Gists in
GitHub. While there are other snippet storage sites on the
Internet (such as pastebin and snip), we do not make any
claims regarding the generalizability of our results to those
other sites.

VIII. CONCLUSIONS

In this paper, we conducted an exploratory study of GitHub
Gists, quantitatively measuring 762k Gists that belong to 750k
users, manually coding the content of hundreds of Gists, and
exploring the common Gist usages described in Web pages
and on Twitter. Our qualitative analysis allowed us to identify
recurring patterns in the data that might be difficult to detect
quantitatively.

Our goal was to understand the purpose of Gists and how
they are used. We summarize our results below.

RQ1. What do Gists look like? Usually a Gist is a small
snippet of source code. Although we found Gists that did
not contain source code, those were less frequent (23.1% in
contrast to 72.9% of code). In most cases, Gists are composed
of one file whose size is relatively small. We also found that
Gists are written in many different programming languages,
with JavaScript and Ruby being among the most popular.

RQ2. How are users using Gists? The usage of Gists goes
beyond the official purpose promoted by GitHub. GitHub
describes Gists as a way to share source code and to embed
source code into external services such blogs or forums.
However, we found that Gists are also used to maintain online
notes with the full benefits of version control. We also found
an incipient set of tools that help users manage their Gists;
We expect the number of such tools to grow as Gists become
more popular.

REFERENCES

[1] T.F. Bissyande, F. Thung, D. Lo, Lingxiao Jiang, and L. Reveillere.
Popularity, interoperability, and impact of programming languages in
100,000 open source projects. In Computer Software and Applications

[7] N. Freed, J. Klensin, and T. Hansen. Request for Comments: 6838 Media
Type Specifications and Registration Procedures. Internet Engineering
Task Force (IETF) http://tools.ietf.org/html/rfc6838, 2015.

Conference (COMPSAC), 2013 IEEE 37th Annual, pages 303–312, July
2013.

[2] A. Capiluppi, A. Serebrenik, and L. Singer. Assessing technical
candidates on the social web. Software, IEEE, 30(1):45–51, Jan 2013.

[3] Joohee Choi, Junghong Choi, Jae Yun Moon, Jungpil Hahn, and Jinwoo
Kim. Herding in open source software development: An exploratory
study. In Proceedings of the 2013 Conference on Computer Supported
Cooperative Work Companion, CSCW ’13, pages 129–134, New York,
NY, USA, 2013. ACM.

[4] John W Creswell. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches, volume 2. Sage Publications, 2009.

[5] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Leveraging transparency.
Software, IEEE, 30(1):37–43, Jan 2013.

[6] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Selecting Empirical Methods for Software Engineering Re-
search. In Guide to Advanced Empirical Software Engineering, pages
285–311. Springer London, 2008.

[8] Georgios Gousios. The GHTorrent dataset and tool suite. In MSR
’13: Proceedings of the 10th Working Conference on Mining Software
Repositories, may 2013. Best data showcase paper award.

[9] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. German, and Daniela Damian. The promises and perils of
mining GitHub. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages 92–101, New York,
NY, USA, 2014. ACM.

[10] Anirban Majumder, Samik Datta, and K.V.M. Naidu. Capacitated team
formation problem on social networks. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’12, pages 1005–1013, New York, NY, USA, 2012. ACM.

[11] Jennifer Marlow and Laura Dabbish. Activity traces and signals in
software developer recruitment and hiring. In Proceedings of the 2013
Conference on Computer Supported Cooperative Work, CSCW ’13,
pages 145–156, New York, NY, USA, 2013. ACM.

[12] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression forma-
tion in online peer production: Activity traces and personal profiles in
GitHub. In Proceedings of the 2013 Conference on Computer Supported
Cooperative Work, CSCW ’13, pages 117–128, New York, NY, USA,
2013. ACM.

[13] Leif Singer, Fernando Figueira Filho, Brendan Cleary, Christoph Treude,
Margaret-Anne Storey, and Kurt Schneider. Mutual assessment in the
social programmer ecosystem: An empirical investigation of developer
profile aggregators. In Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, CSCW ’13, pages 103–116, New York,
NY, USA, 2013. ACM.

[14] D. Spinellis. Git. Software, IEEE, 29(3):100–101, May 2012.
[15] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. Stack-

overflow and GitHub: Associations between software development and
crowdsourced knowledge. In Social Computing (SocialCom), 2013
International Conference on, pages 188–195, 2013.

[16] Rahul Venkataramani, Atul Gupta, Allahbaksh Asadullah, Basavaraju
Muddu, and Vasudev Bhat. Discovery of technical expertise from open
source code repositories. In Proceedings of the 22Nd International
Conference on World Wide Web Companion, WWW ’13 Companion,
pages 97–98, Republic and Canton of Geneva, Switzerland, 2013.

International World Wide Web Conferences Steering Committee.


