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Abstract—With an average of more than 900 top-level merges
into the Linux kernel per release, many containing hundreds
of commits and some containing thousands, maintenance of
older versions of the kernel becomes nearly impossible. Various
commercial products, such as the Android platform, run older
versions of the kernel. Due to security, performance, and chang-
ing hardware needs, maintainers must understand what changes
(commits) are added to the current version of the kernel since
the last time they inspected it in order to make the necessary
patches.

Current tools provide information about repositories through
the directed acyclic graph (DAG) of the repository, which is
helpful for smaller projects. However, with the scale and number
of branches in the kernel the DAG becomes overwhelming very
quickly. Furthermore, the DAG contains every ancestor of every
commit, while maintainers are more interested in how and when
a commit arrives to the official Linux repository.

In this paper, we propose the merge-tree, a simplified trans-
formation of the DAG of the Linux git repository that shows
the way in which commits are merged into the master branch
of Linux. Using the merge-tree, we build Linvis, a tool that is
designed to allow users to explore how commits are merged into
the Linux kernel.

Index Terms—Linux, git, data structures, tree data structures

I. INTRODUCTION

Between 50k and 70k commits are added to the Linux
kernel per year requiring maintainers of older versions of
the kernel to sift through thousands of commits and merges
with tools that are unable to filter and effectively visualize
projects at the scale of the kernel. Older versions of the
kernel are used in embedded systems and mobile phones; for
security purposes, performance needs, and changing hardware
requirements, maintainers must be able to understand the
changes being made in the current version of the kernel in
order to produce the necessary patches for the older versions of
the kernel. Tools like Gitk use a directed acyclic graph (DAG)
model of the repository, showing all commits and merges in
chronological order by when the commit was authored, not by
when it arrived in the official Linux repository.

This representation works in smaller projects; it enables
users to see when changes are made, when these changes
are merged, how each branch is interacting, and the point
where a branch forks from the master branch. In large modular
projects, like the Linux kernel, the DAG becomes a mess of
merges and commits (Figure 1) losing its visual meaning.
In some cases, the Linux kernel is simply too large for
the system to generate a visualization; Github provides a
DAG view for many projects, but is unable to display the

visualization for projects at the scale of the Linux of the kernel
(Figure 2). Between 60k and 70k new commits are created
for the Linux project every year; according to our previous
work [1], a commit takes a median of 30 days from the time
it is authored until it arrives in the official repository. The
snapshot of the kernel tomorrow may be different than the
snapshot from today, containing new commits authored in the
past; distinguishing these new commits from the commits in
the snapshot from today is not trivial.

One major challenge with visualizing the arrival of commits
to a repository is that Git does not store the date that a commit
was merged into another branch, including the master branch.
To complicate the problem, the DAG only has references to the
ancestors of a commit (a model necessary for the operation of
Git), but maintainers would prefer knowing the path a commit
followed to reach the master repository. Tracing a path that
any commit followed to the master repository would imply
that for any given merge, it would be possible to know which
commits were merged. A user could inspect the commits that
arrived into the master branch within a given time-frame by
checking which commits were merged during that time-frame.

This paper makes two contributions; first, we describe a
method of converting the DAG of the Linux repository into a
tree, or merge-tree of the repository, that represents the path
used by a commit to reach the master branch; second, we
present a method to inspect and visualize the history of merges
in the Linux project using the merge-tree model.

These methods and visualizations are implemented in a
web-based tool called Linvis1. Our visualizations and tool
provide information about the location of any given commit
or merge in its respective merge-tree, the files edited, the
modules edited, and the commit message. Linvis allows users
to apply various filters, including the release version, along
with a keyword or phrase from the log preview, the name of
the author, or the commit ID. The user can request all merges
made by Linus that contain a commit or inner merge that
matches the search query, or just the commits and merges that
match the query.

II. MERGE-TREE MODEL

Git uses a directed acyclic graph (DAG) as its main data
model. In this model, a commit has one or more ordered
parents (ancestors), except the root commits of a repository

1Linvis is currently available at http://li.turingmachine.org

http://li.turingmachine.org


Fig. 1: A view of the Gitk interface centered on merge b34870fc9ff15fe46c4066faeeec437a4e63e2d8 by Miller. Commits point
toward their ancestors and there is no clear path from the commit to the merge with the master branch. Neither Gitk nor Git
are capable of showing the commits in master.

Fig. 2: Github Failure Message showing the DAG of the Linux
Project and its relationship to other forks.

which do not have ancestors–Linux’s git repository has two
such commits. Commits are divided into merge commits,
merging two or more branches, and non-merge commits. Non-
merge commits have only one parent, while merge commits
have two or more. The order of the parents matter: the
first parent is the branch in which the merge is being done,
while the rest indicate the branches being merged (Git allows
merging multiple branches simultaneously). The second parent
is the first branch merged, the third parent is the second
branched merged, etc.

Once a commit is created, it is never changed. Git allows
operations to alter commits or reorder them, but it changes the
commit ID in the process, effectively replacing it with a new
commit. This makes commits unable to record the traversal of
merges from the commit to the merge into the master branch.

A short example: assume the commits represented in Fig-
ure 3 show the sequence of events in a repository. In this case,
commits are performed in various repositories and branches.
The DAG representation of the commits is shown in Figure 4.
Notice that the DAG loses information about the master branch
and the repository that the master branch is part of. The merge-
tree view of this DAG is visible in Figure 5. Note that the
direction of the edges of the DAG have been inverted, instead
of pointing from the child to the ancestors, it points from the
ancestor to its successors, forming a path to the master branch.

Also note that the DAG has been simplified, showing only a
single edge on the path to master for any commit.
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Fig. 3: Example of a sequence of events performed in different
repositories. The horizontal axis represents time. Each hori-
zontal section represents a different branch and/or repository.
Each commit points to its ancestor.

A. Computing the merge-tree of the DAG of Linux

Computing the merge-tree from a DAG for any repository
may not be possible; however, certain features of the devel-
opment process of Linux make it feasible to compute the
merge-tree for the Linux repository. First, the master branch
of Linux is maintained by Linus Torvalds, and only Linus has
write access to it. We have verified this assertion in previous
research [1]. We have developed a heuristic that is presented in
Algorithm 1. In short, the algorithm first identifies the commits
made directly to the master branch; whereafter it recursively
determines the shortest path (in terms of time), using the DAG,
from each commit to the master branch using the inverted
DAG.



1

2

3

4

5

6

7

8

9 10

11 12

Fig. 4: DAG representation of the commits represented in
Figure 3. The DAG loses information about which repository
the commit is performed in and through which merges it has
passed on its way to the master branch. The DAG does not
even distinguish the master branch from other branches.
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Fig. 5: Merge-tree view of the commits represented in Figure 3
showing the path they followed to reach the master branch. In
this model the successors of each commit represents the path
followed by that commit to reach the master branch.

B. Evaluation

Merges that do not have conflicts provide information to
verify this heuristic. If a merge does not contain a conflict, it
records a summary of the commits that it merges. See Figure 6
for an example. This summary contains a list of the first 20
non-merge commits in the merge, including their one-line log
description, the full logs of the merge commits that merge
this subset, and the total number of non-merge commits in the
merge.

Merge: 8cbd84f fd8aa2c
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Tue Aug 10 15:38:19 2010 -0700

Merge branch ’for-linus’ of git://neil.brown.name/md

* ’for-linus’ of git://neil.brown.name/md: (24 commits)
md: clean up do_md_stop
[... edited for the sake of space]
md: split out md_rdev_init
md: be more careful setting MD_CHANGE_CLEAN
md/raid5: ensure we create a unique name for kmem_cache...
...

Fig. 6: Example of how merges record a subset of commits
being merged. The commit only shows the first 20 one-line
summaries messages for the 24 non-merge commits it merged.
The ending “...” is part of the log and represents that other
commits were merged.

Algorithm 1 Computing the merge-tree of Linux Git’s DAG

function COMPUTEMERGETREE(DAG): tree
# Compute the tree from the DAG of Linux repository.
# Returns Tree, a graph containing every commit
# in DAG with the path it followed to master.
head← Head of master of git repository
master ← traverse DAG from head using

first ancestor until reaching root
nodes(Tree)← nodes(DAG)

function DISTANCE2MASTER(cid) : seconds
# Helper function
# Recursively compute shortest distance to master
# setting cid’s successor (next) in its way to master.
# This function should be memoized. Otherwise it
# would run in exponential time.
if cid in master then

return 0
end if
d←∞
# Traverse the inverted DAG
for c ∈ children(cid,DAG) do

if c ∈ master then
d1 ← commitT ime(c)−commitT ime(cid)

else
d1 ← distance2Master(c)

end if
if d1 < d then

next← c
d← d1

end if
end for
# c is the commit that follows cid
# in its way to master
add edge (cid, next) to Tree
return d

end function
# Compute the distance for each commit
# discarding result
for c ∈ nodes(DAG) do

distance2Master(c)
end for
return Tree

end function

We used this information to evaluate the accuracy of the
merge-tree model extracted from the DAG. The method we
followed started with the extraction of the commit history up
to July 20, 2016. We computed the merge tree of every commit
until then. Since Linus Torvalds mostly does merging directly
into master, we assumed that every merge by him is the root of
a merge-tree. As described above, the log of a merge-commit
usually contains the number of commits in the merge the
first 20 summaries of commits being merged. We extracted



merges by Linus Torvalds using the command log -merges

-author=’Torvalds and compared the number of commits
according to the log with the number of commits in the merge-
tree rooted in this commit. We also used the summaries of the
commits found in the merge (not necessarily all—see above)
to make sure those commits were in their corresponding merge
tree. For example, for the merge in Figure 6 we would expect
that the merge tree rooted at 8cbd84f contains 24 commits,
and the one-line summaries corresponds to commits in that
merge-tree. We also inspected those with differences to make
sure they were true errors. The results can be summarized as
follows:

• Five merges were false-errors because their logs did
not contain accurate information (were probably edited
by hand). For example in 42a579a0f... one commit
summary was missing (the line was empty), in c55d267

the summaries were reordered.
• The heuristic correctly identified that 79 of Linus merges

(between Jun 7, 2014 and Jun 2, 2014) were made
to a branch (not master). This branch was merged at
(3f17ea6d.. which contained 6809 commits.

• The heuristic worked perfectly until Sept 4, 2007, the
earliest date that it could be verified. Before this date, and
until Dec 12, 2006, merges did not include a summary
of the commits they included, hence making it impossi-
ble to verify; during this period, however, we correctly
identified the merges by Linus into master.

• Before Dec. 12, 2006 (1542 merges) our heuris-
tic breaks due to the presence of a foxtrot commit
(c436688...), which confounded the true master branch
of a repository (see http://bit-booster.blogspot.ca/2016/
02/no-foxtrots-allowed.html for a description of the is-
sue).

In summary, of the merges after Sept 4, 2007, in 100%
of them (16,860) our heuristic was correct. It failed in 1,542
commits before Dec. 12, 2006 and in 836 it appears to be
correct (Dec 7, 2006 to Sept 4, 2007).

III. VISUALIZING THE MERGE-TREE OF LINUX

The goal of Linvis is to simplify the navigation of the kernel
commit information, specifically focusing on merges. This is
done by leveraging the merge-tree to inspect how commits are
merged on the path to the master repository.

A. Use cases

We designed Linvis with two use-cases in mind, though a
user may switch between the cases as they work.
Use-case 1: top-to-bottom approach
These are users that are maintaining a section of the kernel
and would like to pick a merge (including all the commits that
it merges) and merge it directly into their current repository.
This is useful for reducing the amount of re-implementation
work. For these users, it is important to have the ability to
aggregate metadata about files and modules being effected by
the merge. Also, it is important for these users to be able to
navigate from the root of the merge-tree toward the leaves.

Use-case 2: bottom-to-top approach
These are users that start with a known merge or commit
and would like to see what other changes are being made
in commits that are in the same merge, including knowing the
merge-tree they belong to. This is useful to see what other
commits are related to the current commit and how they get
collated into merges that eventually end in the master branch.
This is primarily for maintainers that need to perform some
specific cherry picking of commits. We must provide these
users a mechanism for navigating from a single commit toward
the master branch, allowing them to see other commits that
might be related to their original commit.

B. Data Model

In our visualizations, we leverage the merge-tree model
described in Section II. In this model each commit is either
already in the master branch, or is part of a tree which is
rooted in the merge that merged it into the master branch.
Each commit, whether a merge or non-merge, has only one
successor; the root of each tree has none as it was made by
Linus Torvalds directly into the master branch. Non-merge
commits contain the metadata for the changes made. This
metadata includes the files changed, the lines added and
removed from each file, the author, the date the commit was
merged into the merge that led to being merged into the kernel,
the date the commit was authored, the patch, and the commit
log. Merges contain less metadata, only storing the author of
the merge, the log, the commit date, and the author date, and
potentially, changes necessary to address conflicts during the
merge. The details of the model are outlined in [1].

IV. DESIGN AND IMPLEMENTATION

To navigate and inspect the merge-tree view of the kernel
we created a web-based tool called Linvis. Creating a web-
based tool enables users to use the system without having to
install additional software or store a large database, making
it more accessible, more easily maintainable, and platform
independent. Linvis uses the following mechanisms to reach
our goals of better navigation and better explanation of the
selected changes.

• Filter by searching
• View files edited
• View modules
• Tree viewer

A. Searching

Searching (depicted in Figure 7) allows a user to filter
commits and merges that are irrelevant. The search mechanism
breaks down the results by release version. A user can further
narrow down the search by specifying a range of dates in
which such commits were merged by Linus into the master
branch—not when the commits were created (author date
and/or commit date). This distinction is important. We have
observed commits that have taken years to arrive into the
master repository after they were originally created.

http://bit-booster.blogspot.ca/2016/02/no-foxtrots-allowed.html
http://bit-booster.blogspot.ca/2016/02/no-foxtrots-allowed.html


Fig. 7: Search View allows filtering commits that were merged
in a given period, filtering by author, keyword, or commit ID.

Fig. 8: Search Results. Each table entry is a commit merged
in the desired merged window.

A user may then provide a search text, filtering by the author
name, the commit ID, or keyword from the log. Any part of the
author name may show up in the results, including searching
by email address.

If the user is searching by commit ID, the ID can be
specified by using any of its unique prefixes. For example, the
commit 3f17ea6dea8ba5668873afa54628a91aaa3fb1c0

is returned when the user searches for a commit ID of 3f17e
in the 3.16 Linux kernel.

In the search results (seen in Figure 8), the user is presented
with the one-line log message preview, the author’s name and
email, the date the commit was authored, and the date the
commit was last committed.

Once a user selects a commit or merge to investigate, they
are presented with a tabbed pane allowing them to view the
full commit log, the files edited, the modules involved, and
the merge-tree view.

The first tab displays the full commit log (Figure 9). From
this, a user is able to see what they would see had they
searched for the commit using Git log. This doesn’t provide
additional information to the other tools, but helps to complete
the functionality of Linvis. The commit log provides a user

Fig. 9: Panel showing the Commit Message of a commit.

Fig. 10: Panel showing the files modified by all the commits
that are part of this merge.

with the information about the content of the commit and
who has signed-off on the commit to ensure that it is of
good quality. The message for merges may contain a summary
of the commits being merged. The information within these
messages is highly variable, and is completely dependent on
the author’s style. As the user moves toward the root-level
merge, the quality of these messages generally improves.

The second tab is the files tab (Figure 10). This tab provides
information on what files have been edited, how many lines
were added, and how many lines were removed in a given
commit. For non-merges, this functionality is similar to the
other tools available. Our tree-based design model allows us to
extend this functionality to merges by aggregating information
about all the commits that are children of the merge in the
merge-tree, which other tools are unable to show. To find the
number of lines added to a file in a merge, we take the sum
of the lines added to that file in each of the children of that
merge. We do the same for calculating the number of lines
removed.

The modules tab (Figure 11) shows the modules that are
contained within the commit. Modules are not natively recog-
nized by Git, and are not going to be present in all repositories.
In the Linux repository, authors put the module they are



Fig. 11: Panel showing the modules changed by all the
commits in this merge.

working on in the one-line summary of the log-message; for
example: the log gcov: add support for FCC 4.9 has updated
the gcov module (the coverage testing tool of the kernel).
We heuristically extract the module by taking all text in the
log summary of commits until the first colon. Modules are
logical partitions of the information in the kernel. Depending
on where the author was working, modules can be general,
such as “bluetooth” and “wireless”, or can be quite specific for
individual hardware, such as “ath9k_hw” and “wl1251”. In a
few cases, the author of a commit does not correctly follow this
format and the heuristic approach fails. As with the Files panel,
non-merge commits show their corresponding information, but
for merge commits we aggregate all the modules changed in
all the commits that are part of that merge. The output of this
view is shown in Figure 11.

Finally, we have the Tree view tab. The tree view is designed
for providing easy navigation of the commits within the merge-
tree that is rooted in the current merge. It also provides a clear
topological view of the merge and the submerges it includes.
We have experimented with various tree designs to find a
design that allows for easy navigation and visualization of
both large and small trees. We discuss this panel in the next
subsection.

B. Merge-Tree Views

The merge-tree view is what makes Linvis unique to other
tools that inspect the DAG of a Git repository. With it, a
user can inspect how commits are merged on their way to
the master branch. We have experimented with various types
of trees:

1) List trees are a text-based representation of the merge-
tree, and are easy to search and navigate.

2) Reingold-Tilford trees provide a clear visual representa-
tion of the tree structure of the merge-tree.

3) Bubble trees organize the data hierarchically by having
the parent node contain the child nodes similarly to tree
maps, but clearly showing the parent-child relationships
between commits and merges.

1) List Tree: The list tree viewer (Figure 12) is in the form
of nested lists, and is designed to more closely model the

Fig. 12: List tree view of merge 3f17ea6

tree view found in file browsers. This tree only contains the
commits and merges that are within the subtrees of the current
merge. A commit will never have any items in this tree as it
is a leaf. To accompany the tree, we include breadcrumbs at
the top of the page to enable a user to navigate both from the
root to the leaves and from a leaf to the root. The last item in
the breadcrumb list is the current commit, the previous item
is the parent of the current commit, and the first item is the
root merge into the kernel.

2) Reingold-Tilford Tree: The Reingold-Tilford tree [2]
(Figures ?? and ??) allows the visualization and navigation
of the entire merge-tree in an intuitive representation of the
tree. This illustrates a clear notion of root and leaves, and
how to navigate in either direction. Some merge trees are very
large, containing thousands of commits and merged. While the
tree is capable of producing a visualization, it becomes far
more difficult to understand. For example, the merge, 3f17ea6
performed by Linus Torvalds June 8 2014, contains 7217
commits and merges. 2

The user is initially greeted with their current node centered
on the screen. They are able to zoom the tree by scrolling the
mouse, and clicking and dragging to pan the tree. They can
see more details about a node by clicking on it, which will
provide them a link to the specific page for that commit.

3) Bubble Tree: Bubble trees are useful for providing a
clear visualization of wide, hierarchical data [3]. The tree
structure is represented by the nesting of nodes; the largest
circle is the root, containing all the other nodes. The smallest
circles do not contain any nodes and therefore represent the
leaf nodes.

Our implementation of the bubble tree (Figure 15) provides
the user with a clear picture of where a commit is located in

2This commit can be inspected at http://li.turingmachine/org/commits/
3f17ea6dea8ba5668873afa54628a91aaa3fb1c0

http://li.turingmachine/org/commits/3f17ea6dea8ba5668873afa54628a91aaa3fb1c0
http://li.turingmachine/org/commits/3f17ea6dea8ba5668873afa54628a91aaa3fb1c0


Fig. 13: Merge 4dc4226 is a subtree of 3f17ea6, for the power-
management module of the kernel

the merge tree. We highlight the selected commit or merge in
red. Non-selected merges are in a shade of blue determined by
the depth of a node in the tree. The root is the lightest shade
of blue, while the contained merges are progressively darker;
the commits are white.

The bubble tree doesn’t have an implicit way of providing
additional information, placing any text near the nodes makes
the tree impossible to read, so we include a separate pane
in the web page. When a user hovers over a node, the pane
shows additional information about the author and the commit
message and a link to the detailed page for that commit or
merge. If the user clicks on a node, the tree will zoom to
that node and the information in the info pane will persist,
enabling the user to click the link. This tree provides an easy
mechanism for users to navigate from the root to the leaves
and vice versa.

V. IMPLEMENTATION DETAILS

The front-end uses asynchronous requests to gather
the information for the trees and tables. This enables
third-parties to implement new front-ends, trying other
designs, though this interface may change in the future.
The tree, file, and module information is accessible
through http://li.turingmachine.org/data/tree/JSON/<cid>,
http://li.turingmachine.org/data/files/JSON/<cid>,
http://li.turingmachine.org/data/modules/JSON/<cid>,
respectively.

The response for the tree is a single object. This object is
the root node of the tree, and may contain an object of children
sub-tree objects in the children field, which are in the same
format as the root object. The children object uses the commit
ID as the key.

The tree node objects have the following fields:

Field name Data type Description
cid string Commit ID
name string One-line log summary

mlinus string Root merge commit ID
author string Author name and email
mnext string Parent merge commit ID

children object Object of tree objects
The file responses contain only the files that the selected

merge or commit works with. The response is a single object
in the form of a tree. This object is the root of the tree, and
represents the current merge or commit. If the current position
in the tree is an inner node, the response will contain the child
nodes in the children field, otherwise children will be
an empty list. The format of file response is as follows,

Field name Data type Description
cid string Commit ID
mnext string Parent merge commit ID
children list List of tree objects

files list of tuples
Filename string
Lines added uint
Lines removed uint

VI. DISCUSSION

From a developers point of view, the are two major dis-
advantages of the DAG model of Git: a) its edges point
backwards, i.e. commits point to their ancestor, not to the
commit that succeeds them on the path to being integrated;
and b) the DAG contains many more edges that are necessary
to understand how integration occurred. We addressed these
two issues with the creation of the merge-tree model from
the DAG of Linux. Effectively, the merge-tree recovers the
details of how each branch—and the commits they contain—
was merged into the master branch.

In our experience, no other Git repository reaches the level
of DAG complexity that Linux has. In most Git repositories,
most merges are not nested—most merges merge directly
into the master repository, and these merges only merge a
few commits. Even in these simplified cases, the merge-
tree can provide a valuable summary of how commits are
integrated into the master branch, specifically since the time of
integration may be very different from the time the commits
were authored.

The biggest challenge is computing the merge-tree of any
given repository. It is likely that our heuristic for computing
the merge-tree will not work with other repositories. The
heuristic requires that there are no fast-forward merges into
the master branch of the repository (a majority of repositories),
and that there are no foxtrot merges (a practice that is starting
to be considered desirable by git users3). We are able to
use our heuristic with the Linux kernel because of the strict
integration model imposed by Linus. To validate the results
of the heuristic, we use the continuous mining technique
described in [1]. Continuous mining of the repository requires
foresight and planning.

3See http://devblog.nestoria.com/post/98892582763/maintaining-a-
consistent-linear-history-for-git and https://developer.atlassian.com/blog/
2016/04/stop-foxtrots-now/

http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
http://devblog.nestoria.com/post/98892582763/maintaining-a-consistent-linear-history-for-git
https://developer.atlassian.com/blog/2016/04/stop-foxtrots-now/
https://developer.atlassian.com/blog/2016/04/stop-foxtrots-now/


Fig. 14: Zoomed out view of the Reingold-Tilford tree for merge 4dc4226

Fig. 15: Bubble Tree of merge 3f17ea6, merge 4dc4226 is the
currently selected merge and is highlighted in orange.

Because Linvis leverages the merge-tree model of the ker-
nel, it provides mechanisms and visualizations that other tools
are unable to produce. It gives us the ability to see how
commits are being merged into the master branch, allowing
us to better understand how code is integrated into the kernel.

Our goal was to build a tool to enable maintainers to
effectively navigate and browse the changes performed to
the kernel over the period of a release. Achieving this
goal includes removing information that does not pertain
to the area of the kernel that the user is interested in.
In Figures 16 and 17 we can visually compare the results
returned from Gitk and our tool for the top-level merge
“042dd60ca6dec9a02cefa8edd67de386e35755d6” from kernel
version 3.10. Note that Gitk has no way to show or recognize

Fig. 16: Merge Dag View

Fig. 17: Merge tree topology for the same merge as in
Figure 16.



that this is a merge into the master branch.
The log information to this merge-commit in both of these

figures is identical, but the presentation drastically changes
our ability to comprehend what we are seeing. The primary
difference is the removal of irrelevant information. In Gitk
(Figure 16), the visualization results include commits and
merges from other components of the kernel, while our tool
(Figure 17) only includes the results that are specific to the
component of the kernel that we are interested in.

Even though this merge is relatively small, containing only
four sub-merges, three of which only contain a single commit,
and the last containing two commits, it is already hard to
visualize in Gitk. With Linvis we are able to immediately see
what section of the kernel these commits and merges pertain
to. The DAG view of this provides almost no explanation,
furthermore, users must work to determine where this merge
ends and the next one begins.

Linvis further enhances our understanding by summarizing
the files and modules that were edited in the entire branch
being merged. We are able to determine that three files,
“palamas-regulator.c” had two lines added and two lines
removed, “dbx500-prcmu.c” had 12 lines added and 12 lines
removed, and “core.c” had 5 lines added and 2 lines removed.
Finally, we are able to determine that only the “regulator”
module was modified in this merge and was modified by 5
commits.

VII. FUTURE WORK

There are still many areas that can be improved before the
full potential of our model can be realized. Here, we outline
various areas of the tool that still need more attention.

A. Files
There currently is no functionality surrounding searching by

filename. Users falling under use-case 2 may know what file
they are editing and try to determine how it may work with the
other commits and merges in the module. It is possible that a
third use-case may arise, where the user wants to determine all
commits that effect a given file. In both cases, bottom-to-top
approach is applied.

There is limited functionality to the presentation of the
file information. At a minimum, the patches for the commits
can be displayed. From there, the patches can be used to
piece together parts of the file to generate a single patch at
a given merge rather than displaying each patch individually.
The patches can also be used for determining what kinds of
changes were made, if the lines are being added, removed, or
being replaced.

B. Authorship
Our model can aggregate more information than what we

have implemented. The authorship information is important for
licensing purposes, and we can show all authors contributing to
commits in a merge and how many commits they contributed
to the merge. We could go further, providing information
about what files they edited, how many lines they added and
removed, and more.

C. Evaluation

At this time, we have no evidence that our tool is able to
improve the work-flow of maintainers. We believe that the tool
is able to improve the work-flow and performance of main-
tainers because it provides cleaner mechanisms of visualizing
and presenting the commit information. It is able to provide
more relevant information, while removing information that is
irrelevant to a given module or set of merges.

We can either perform user-testing to show how a users
workflow changes, or we could have maintainers evaluate and
critique the tool and use their feedback to determine if the tool
meets our goals.

VIII. RELATED WORK

Version control systems monitor the development lifetime
of software projects. This makes the version control system
vital in providing information about how a software project
is being developed. To our knowledge, we know of no Git
repository visualization tool that builds a tree that maps the
path a commit follows to the master branch from the DAG
provided by Git. This may be because more information is
required to generate the merge-tree model than what is stored
by Git. However, there has been a lot of work in providing
visualizations of various repositories.

Many tools work to address the issues in communication be-
tween developers in inter-team collaboration work. Codebook
[4] uses a data mining technique to determine the developer
of a piece of code, the program manager who wrote the
specification for the code, and the program managers and
developers on the team who were working together. Hipikat
[5] is another tool with a focus on communication. Where
Codebook focuses on developers working on a project, Hipikat
is focused on enabling easier integration of new developers to
a project by providing them with easily-searchable artifacts of
the changes made. Codebook is useful for pairing a contributor
with the original developer; however, the developer may not
have worked with the piece of code in years. A Hipikat
program may provide more information to the maintainer as
it records the artifacts of why certain design decisions were
made when they were made using other tools like Bugzilla
and CVS. Neither tool is sufficient in meeting our goals to
provide a summary of the topology of the kernel repository
through a visual tree.

Most visualizers provide a visual presentation of a certain
aspect of a repository. Fractal Figures [6] uses a unit square
to represent a portion of a project, then partitions the square
based on the proportion of an author’s contributions to that
portion of the project. EPOSee [7] and Evolution Radar [8]
perform further analysis, determine which files are made
together, and what changes are made over a sequence of
commits, though the goals behind these projects is different.

Codebook, Hipikat, Fractal Figures, EPOSee, and Evolution
Radar all work with data from CVS repositories. Our goal
is to provide information about Git repositories, specifically
the Linux master repository. Fewer tools are available for



generating visualizations and summaries of Git repositories,
potentially due to the DAG model used by Git.

Gource is a tool for providing an interactive timelapse
of the state of a repository [9]. In the timelapse, it shows
who contributes and what type of contribution a developer is
making. These contribution types are one of, adding a file,
removing a file, and changing a file. While the timelapse
is interesting to watch, it does not provide any additional
explanation of the changes actually being made, only the
frequency that they are being made and who is making them.

The current industry standard tool for Git repository visu-
alization is Gitk. The Gitk interface is built around the central
DAG viewer. The DAG view displays the commits on their
respective branches, the author of the commit or merge, and
the date the commit or merge was authored. A user can select
a single merge or commit to view additional information. For
both merges and commits, Gitk will present the user with the
Git log. If the user selected a commit, Gitk will also present
the user with the patch information and the names of the files
edited. Gitk is unable to provide the patches and filenames
information in merges, as it is unable to aggregate commit
information in merges.

Our tool is primarily aimed at presenting the hierarchi-
cal structure of the Linux git repository. We use tables for
presenting the summarized information of the commits and
merges, but this information could also be presented in a
graphical form. Various graphical forms for displaying file and
authorship data exist, the principal forms being matrix views,
city scapes, bar and pie charts, and networks [10]. Any of these
data visualization metaphors are applicable to our system.

IX. CONCLUSION

Our tool, Linvis, shows promising results in working toward
our goals, building a tool that can more easily navigate the
repository, and provide clearer explanations of the changes
made. The filtering by searches and the various tree visualiza-
tions enable users to easily navigate through the kernel, finding
the commits and merges that pertain to what they are interested
in. The tree visualizations are able to both serve as a navigation
piece, providing simpler navigation through the kernel, but
also demonstrate which commits contribute to which merges,
providing further explanation over the DAG. The tree model
further improves the explanation by enabling the tool to
aggregate metadata at the merges instead of requiring a user
to manually aggregate the information. Our tool currently
aggregates file information and the modules edited, but can
be extended to include authorship information and aggregated
patch information.

We use a heuristic method to generate the tree from the
repository. The heuristic requires that the repository does not
have fast-forward merges into the master branch or foxtrot
merges, which obfuscate the master branch. In either case, the
heuristic will break and result in a tree that does not accurately
represent the repository.

These may pose as significant drawbacks to smaller
projects; however, with a proper merge discipline, the heuristic

is able to correctly convert the DAG into a merge-tree. The
importance of clear visualizations in large projects outweighs
the costs of enforcing a clean merge discipline. The tree-
based model appears to have the ability to provide a clean
visualization and more detailed explanations of the changes in
the Linux kernel.
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