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ABSTRACT

Version control systems are an asset to software development, enabling developers

to keep snapshots of the code as they work. Stored in the version control system is

the entire history of the software project, rich in information about who is

contributing to the project, when contributions are made, and to what part of the

project they are being made. Presented in the right way, this information can be

made invaluable in helping software developers continue the development of the

project, and maintainers to understand how the changes to the current version can

be applied to older versions of projects.

Maintainers are unable to effectively use the information stored within a software

repository to assist with the maintanance older versions of that software in

highly-collaborative projects. The Linux kernel repository is an example of such a

project. This thesis focuses on improving visualizations of the Linux kernel

repository, developing new visualizations that help answer questions about how

commits are integrated into the project. Older versions of the kernel are used in a

variety of systems where it is impractical to update to the current version of the

kernel. Some of these applications include the controllers for spacecrafts, the core of

mobile phones, the operating system driving internet routers, and as

Internet-Of-Things (IOT) device firmware. As vulnerabilities are discovered in the

kernel, they are patched in the current version. To ensure that older versions are

also protected against the vulnerabilities, the patches applied to the current version

of the kernel must be applied back to the older version. To do this, maintainers

must be able to understand how the patch that fixed the vulnerability was
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integrated into the kernel so that they may apply it to the old version as well.

This thesis makes four contributions: (1) a new tree-based model, the Merge-Tree,

that abstracts the commits in the repository, (2) three visualizations that use this

model, (3) a tool called Linvis that uses these visualizations, (4) a user study that

evaluates whether the tool is effective in helping users answer questions related to

how commits are integrated about the Linux repository.

The first contribution includes the new tree-based model, the algorithm that

constructs the trees from the repository, and the evaluation of the results of the

algorithm. the second contribution demonstrates some of the potential visualizations

of the repository that are made possible by the model, and how these visualizations

can be used depending on the structure of the tree. The third contribution is an

application that applies the visualizations to the Linux kernel repository.

The tool was able to help the participants of the study with understanding how

commits were integrated into the Linux kernel repository. Additionally, the

participants were able to summarize information about merges, including who made

the most contributions, which file were altered the most, more quickly and

accurately than with Gitk and the command line tools.
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Chapter 1

Introduction

A version control system records the changes being made to the files of a project,

enabling users to view previous versions of the files, view the individual changes made,

and restore the files back to a previous state if necessary. The version control system

also maintains a log of who made changes and when those changes were made. By

storing this information, the version control system stores the history of the project.

Presented in the right way, there are many opportunities to use this information to

help users understand the evolution of the software system. A version control system

can be used in any context where file history is needed, it is usually used in the

software development process.

Git is a version control system (VCS) used by the Linux kernel project. Git was

designed by Linus Torvalds for the Linux project as a replacement for BitKeeper.

In order to handle the number of people contributing to the kernel from different

locations, git was designed to be distributed. Unlike in centralized version control

systems, where users must re-synchronize with the server, a distributed version control

system provides each user with a full first-class repository. This allows the user to have

additional flexibility, and means that a user has to synchronize their local repository

with the remote repository less often. Furthermore, each user has access to the entire

history of the repository, including all branches and commits that were part of the

original repository. Users are able to combine and re-order commits before making

the changes publicly available, which alleviates issues with synchronization between

developers. To make it more useful to the Linux project, git was designed to allow

easy branching. Branches allow users to work on a logically separate part of the

repository, then merge the changes into the repository once the feature is finished

or the bug is fixed. This lets git users work independently on a feature, taking full
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advantage of version control, without needing to worry about synchronization until

the feature is ready to be integrated. To support these features, git uses a directed

acyclic graph to represent the structure of the commits in the repository. The nodes

of the graph represent the commits, containing the changes being made and metadata

about when and who made the changes. The edges of the graph represent the parent

relationship between commits.

Visualizations of this graph are used to answer questions about the development

of the software including what changes are being made into various branches, how

the changes to the code are grouped, and who is working with whom, among others.

Maintainers use these visualizations to understand what changes are being made to

the current version of the software in order to apply the necessary fixes to older

versions of the software to keep them secure and performing correctly. This requires

understanding how a commit is integrated into the repository, and other commits

that are merged with that commit. In large, active, software repositories this task

is not trivial. The graph can be large and complicated, making these visualizations

difficult to understand. The difficulties in understanding how commits are integrated

into the Linux kernel repository drives the overarching question behind this thesis.

Overarching Research Question: How can we effectively visualize the

graph of the Linux repository in a way that gives insight into how commits

are integrated?

To answer the overarching question, this thesis makes four contributions. First, a

new tree-based model, called the Merge-Tree, is abstracted from the underlying graph

of the repository. Compared to the graph, trees are relatively easy to visualize, and

there are many visualization metaphors that take advantage of different properties of

trees. The Merge-Tree abstracts the repository commit graph into a set of trees, each

rooted at a merge into the master branch of the repository. The leaves of the tree

are the commits, and the inner nodes of the tree represent the merges leading to the

integration of the commits. Second, this thesis proposes three visualizations that take

advantage of the Merge-Tree model. Third, an implementation of the visualizations

in a tool called Linvis. Fourth, the last contribution of this thesis is an evaluation of

the tool.
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Thesis: Trees are more effective for visualizing and summarizing the inte-

gration of commits into the Linux kernel repository than the DAG.

1.1 Thesis Organization

This thesis is organized as follows. Chapter 2 contains background information about

the motivation for this work and the structure of git repositories.

Chapter 3 introduces the Merge-Tree model. This chapter includes a description

of the model, an algorithm to convert from the DAG to a set of Merge-Trees, and an

evaluation of the resulting trees built from the Linux repository graph. At the end of

the chapter is a summary of the information found in the Linux repository, including

the number of authors contributing, the number of commits, and the average number

of nodes per Merge-Tree.

Chapter 4 introduces Linvis, providing the use-cases that were being targeted.

This chapter also includes the features that were implemented into Linvis, including

its search engine, summarization tables, and tree visualizations. More details on how

the tool was implemented are included in Chapter 5.

Chapter 6 is the empirical evaluation of Linvis, and include the methodology and

results of this two-part study. The first part evaluates user comprehension of the

DAG and the second part compares visualizations and summarizations of the DAG

in Gitk against the visualizations and summarizations of the Merge-Tree in Linvis.

Chapter 7 discusses the results of the study providing more insight on the results.

The chapter includes observations from the study, and the comments from one of

the members of the study who had worked as a release manager, and a description

and algorithm for an updated Merge-Tree that takes into account the comments and

observations from the study. The chapter concludes with the limitations of the work

and the future work.

Chapter 8 concludes that paper, reiterating the problem addressed by this thesis

and how it was solved.
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Chapter 2

Background and Related Work

A version control system tracks files, and how they are changed over time. While

it can be used for storing any digital information, version control is usually used in

the context of software development; it is used for storing and managing the files of

the project, including the project’s source code and binary assets. Version control

has two primary purposes: first as a means of storing files, and second as a means of

retrieving historical versions of those files. In addition to fulfilling the two primary

purposes, a version control system maintains a log of who is making the changes and

when the changes were made.

Early version control systems, such as Revision Control System (RCS), were de-

signed for local development and provided very little support for collaboration. As

software projects grew, the model quickly became outdated, being replaced with a

centralized server model. Concurrent Version System (CVS) and Apache Subversion

(SVN) are two examples of centralized version control systems. The centralized ver-

sion control system provides means of collaboration through a client-server interface.

The repository is stored in a central server. Developers use a client to check out parts

of the repository, choosing parts that pertain to the part of the codebase that they

are editing.

In large open source projects, the centralized architecture becomes a burden. Com-

mon tasks such as committing and changing branches requires re-synchronization with

the central server. To work with the repository, the developer must always have access

to the central server. To maintain the atomic properties of committing, the server

will momentarily lock the repository to ensure that no other changes happen while a

commit is being processed or a conflict resolved.

Due to the limitations of a centralized architecture, the Linux kernel uses a dis-
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tributed version control system. Until April of 2005, the kernel project used Bit-

Keeper. In April 2005, the licensing became too restrictive and Linux was forced to

change version control systems1. Git was written as the replacement for BitKeeper,

and was designed to maintain a similar level of patch granularity as in BitKeeper2.

The first version of git was roughly 1300 lines of code and was written and self-hosted

in less than two weeks3.

Both BitKeeper and git are distributed version control systems (DVCS). In dis-

tributed version control, the entire repository is mirrored on the developer’s local

computer instead of copying parts of the project. As a result, the local copy is much

larger on disk than with a centralized repository, but the developer has the freedom

to make changes to the code and to the structure of the repository without needing

to re-synchronize with a central server.

It is often desirable to have the features of version control before a feature is

ready to be made available in a public-facing repository. It is also desirable that the

commits into the master branch of the master repository leave the project in a state

that will both compile and operate correctly. Distributed version control makes this

possible; developers can combine, split, and edit commits locally before pushing their

changes into the central repository.

A clone refers to a copy of a repository, cloning occurs when the developer makes a

copy of a target repository, the target is recorded as a remote repository. It is possible

for repositories to have many remotes, or have none. The process of updating a

remote repository with the changes made in the local repository is known as pushing.

Conversely, updating the local repository with the changes made to a remote are

referred to as pulling. By default, the remote repository that was cloned will be given

the label origin, which is the repository where git will push to and pull from, unless

another remote is specified.

After changes are made to a remote, the local repository must resynchronize with

the remote in order for those changes to be propagated. This resynchronization

can be done in one of two ways. The normal way of resynchronizing is through

the pull command, which fetches the changes in the origin repository, then merges

the branches of the origin repository into the corresponding branches in the local

repository. The second way of resynchronization breaks the process into two steps,

1https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
2 initial announcement of git on the mailing list https://marc.info/?l=linux-kernel&m=

111280216717070
3From the git mailing list https://marc.info/?l=git&m=117254154130732

https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://marc.info/?l=linux-kernel&m=111280216717070
https://marc.info/?l=linux-kernel&m=111280216717070
https://marc.info/?l=git&m=117254154130732
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manually issuing the fetch command and then manually merging or rebasing branches.

Rebasing is the process of moving one or more commits from one ancestor to another.

The process of updating a remote repository with the changes made in the local

repository is known as pushing. If there are no merge conflicts, the merge can perform

a fast-forward merge, shown in Figure 2.1b, which flattens the changes made in the

origin repository into the master branch of the local repository. Fast-forward merging

hides the fact that git would otherwise consider the two repositories to be separate

branches. Without fast-forward merging, any resynchronization would result in the

addition of a new merge node. If there is a merge conflict, or the user has specified

that the merge should not fast-forward, a merge commit is created, as shown in

Figure 2.1c.

Distributed version control gives developers more flexibility with their local repos-

itory and requires the developer to synchronize their local copy of the repository with

the public master repository less often than with centralized version control. The

public master repository can be thought of as being the equivalent of the central

repository in a centralized system. Instead of it being enforced by the version control

system, it is a socially agreed upon location where the official version of the code

exists. Unlike with the centralized version control though, there is no requirement

for the developer to ever push their changes back to the public repository; the lo-

cal repository is completely standalone. Developers can make changes that would

otherwise break the workflow of other developers because they have a standalone

repository. These changes include rebasing branches, re-ordering commits, splitting

commits, and squashing commits into one. Once the developer is happy with their

set of commits, they may push them to the remote repositories.

Git is designed to handle multiple repositories, with many developers working

simultaneously. It is also be able to support the ability to move commits between

branches, re-order commits, combine multiple commits into a single commit, and split

a commit into multiple commits.

To support these feature, Linus chose to use a directed acyclic graph to represent

the commits and the relationships between them. The graph imposes relatively few

constraints on what a developer can do. The only requirement is that there is not

a cycle in the graph of the commits, that is, a change cannot depend on itself. Git

does not impose the requirement of a master branch. SVN always has a well-defined

trunk, the SVN equivalent of a master branch. The graph structure also supports

relatively cheap branching compared to other version control systems, which makes
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(a) The repository contains two commits that
are part of the master branch, with one com-
mit that is part of a separate branch waiting
to be merged.

(b) A fast-forward merge does not create a
merge commit, and instead moves the branch
pointer forward to the commit that is being
merged into the branch.

(c) A merge commit is created when the merge
cannot be made cleanly, or –no-ff is passed to
the merge command.

Figure 2.1: A depiction of the distinction between fast-forward merges and non fast-
forward merges
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it possible for developers to create more branches without having to worry about

consuming excessive resources. Git places fewer constraints on the structure of the

commit graph than many other version control systems. For example, most version

control systems need a branch to take the role of a main, or master, branch, whereas

git has no such requirement. With fewer constraints on the structure of the commit

graph, tools are unable to make as many assumptions when abstracting the graph.

Many tools avoid this by not abstracting the graph and visualizing other properties

of the repository, such as the file structure. Tools that do visualize the graph do only

minimal abstraction, creating a visualization of the graph itself.

The graph of large and active repositories is very complicated. It is very difficult

to understand the relationship between commits, and how the commits are integrated

into the project from a visualization of the graph. This poses a problem for main-

tainers who must understand how a commit is integrated into the master branch of

a project and the other commits that are integrated with that commit. Maintainers

must sift through thousands of commits to determine which changes being made to

the current version of the software pertain to the area of the software that they are

maintaining. Specifically, maintainers must be able to answer two questions:

• How is a commit integrated into another branch?

• What other commits are integrated with the commit?

The remainder of this chapter includes related work, a description of git and how

it’s used, the directed acyclic graph that underlies git repositories, and an explanation

of why this work focuses on the Linux kernel repository.

2.1 Related Work

A Version Control System (VCS) tracks the development of a software project, record-

ing each change as it happens. By tracking the changes, the VCS contains the entire

history of the software, rich with information about who the authors are, what files
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are being modified, and the changes being made. This makes the VCS vital in provid-

ing information about how a software project is being developed and how the software

is structured. In order to use the information stored in the VCS, users must be able

to gain a clear understanding and summarization of the changes being made, and

how they interact with the rest of the source code. While there has been extensive

research on visualizing software repositories, previous work does not focus on how

commits and merges are structured in the repository graph, and in extension, how

commits are integrated into a repository.

The literature on repository visualization and summarization can be broken down

into three academic subcategories: communication[8, 2], aspect-oriented visualization[9,

4, 10], and visualizations of naturally occurring phenomena[21, 5]. A fourth indus-

trial category exists, including tools like GitKraken and SourceTree. The goal of the

industrial tools is not to extract or synthesize new information from the repository,

but to act as a user-friendly client on top of what git already provides.

Many tools focus on addressing the issue of communication between developers

in inter-team collaborative work. Hipikat[8] investigated communication between

developers, focusing on assisting with the integration of new developers into a project

though communication, providing the new developer with searchable artifacts of the

changes being made, and where to find them. The artifacts may include files or bug

information, shown in Figure 2.2. Codebook[2] also focused on communication, but

while Hipikat focused on assisting new developers find artifacts, Codebook assists

developers with finding who was responsible for creating the artifact. Codebook used

a data-mining technique to determine the developer of a piece of code, the program

manager who wrote the specification for the code, and the program managers and

developers on the team who were working together. A screenshot of Hoozizat, an

implementation of Codebook, is shown in Figure 2.3. Hoozizat and Hipikat use the

version control as the archive of artifacts that are being queried. Neither tool is

designed with the goal of providing information on the topological structure of a

source code repository, nor are these tools designed for visualization purposes, but

they do draw information from the contents of the version control system.

Most visualization systems provide information about a certain aspect of the con-

tents in the repository. The goal of Fractal Figures[9] is to show the division of work

between contributors. The project is represented as a square. The square is then sub-

divided based on the proportion that a given contributor contributed to the project,

shown in Figure 2.4. The visualization makes it easy to see where work is evenly
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Figure 2.2: View of Hipikat, listing bugs that are similar to the one being viewed

Figure 2.3: A screenshot of the search results on Hoozizat, an implementation of
codebook.[2]
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divided versus the projects where a single contributor is doing most of the work.

Figure 2.4: Construction of Fractal Figures[9]

EPOSee[4] and Evolution Radar[10] use the information from the version control

system to determine which files are edited together. These tools are designed to

help a user identify the degree to which two files are coupled. Two files are edited

and committed together frequently are said to be more tightly coupled. This makes

it possible to determine when two classes are semantically related. The evolution

radar shown in Figure 2.5 places points on a circle based on the name and how

tightly coupled they are. The files are arranged around the circle based on the file

name, including the full file path. This has the effect of grouping files that are from

the same directory. The distance from the center of the circle is dependent on how

tightly coupled the file is to the file be analyzed. A more tightly-coupled file will be

positioned more closely to the center of the circle.

Hoozizat, Hipikat, Fractal Figures, EPOSee, and Evolution Radar all extract data

from CVS repositories. Our goal is to provide information about git repositories.

Fewer tools are available for generating visualizations and summaries of git reposito-

ries.

The visualizations of naturally occurring phenomena show patterns in coopera-

tion and communication that arise within a software project. Heller et al.[17] plots

communication on a map. This visualization show patterns in communication as

they arise, and how these communication channels operate internationally within a

software project, depicted in Figure 2.6.

The visualizations proposed in Gource[5], shown in Figure 2.7, shows which files

contributors are working on. Using this, it is possible to draw conclusions about which

parts of a project a given contributor is working on and the group of contributors

working on a given area. Gource uses a graph metaphor structure to represent the

file structure of a repository. Files in the same directory cluster together to form

a node. Edges between the directory clusters represent which directory contains
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Figure 2.5: Evolution Radar visualization[10]

Figure 2.6: A screenshot of the communication mapping tool by Heller et al.[17]
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another, although there is no way to determine the direction of the relationship. User

avatars move around the graph emitting different beams of colored light depending on

the change being made to the file. Green indicates the creation of a new file, yellow

indicates a modification, and red indicates the deletion of a file. The visualization is

animated to show how a project grows over time. Codeswarm[21], shown in Figure 2.8,

is similar to Gource, using a timelapse approach to visualizing the events in the

repository. Unlike Gource, which constructs a graph from the directory structure of

project, Codeswarm does not have a graph structure; developers are the center of

the visualizations. When a developer makes a change to a file, the file lights up and

flies toward the developer. As a developer makes more changes, the files that the

developer is modifying will form a ring around their avatar. If multiple developers

are modifying a file, the developer nodes are drawn together.

Figure 2.7: View of Gource file graph with users operating on a repository[5]

There are many non-academic tools that are designed as an interface to git. While

not all of these programs provide visualizations, those that do use a visual metaphor

of the DAG to show topological relationship between commits. While they ultimately

show the same information, the topology of the repository, the organization of that

information is different.

Gitk is the graphical interface that is shipped with Git, shown in Figure 2.9. The

interface is fairly complex, and looks a little dated. The program displays all of the

information that is stored in a commit, giving what is likely the most complete view

of the information stored. Unfortunately, the presentation makes the interface appear

somewhat overwhelming.

GitKraken [1], shown in Figure 2.10, is a popular commercially-written git inter-

face that aims to be efficient, elegant, and reliable, according to it’s official website.

On visual inspection, it appears to satisfy these goals. Overall, the interface is clean
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Figure 2.8: View of the Postgresql repository in Codeswarm[21]

Figure 2.9: Gitk interface, the graphical interface shipped with Git.
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and most actions that are possible with the git command line are available in the

graphical interface. The tool is effective and garners online approval from users. The

graph of the commits is shown in the center of the main view and provides users with

the same information as the graph visualization in gitk and the git command line,

though it may be visually more appealing.

Figure 2.10: Screenshot of the main view in GitKraken[1]

In January of 2018, the Gnome project released a replacement for Gitk. Gitg[16],

shown in Figure 2.11, is the git GUI client for the Gnome environment. The visu-

alization is relatively clean, and it is able to produce a visualization of the Linux

repository quickly. Like in Gitk, Gitg uses arrows to indicate that a branch has been

cut. Unlike in Gitk, the arrows do not hyperlink which makes it difficult to find the

parents of a commit. There is no apparent way to find the other side of the branch,

as the interface does not provide information about the parents or children of the

commit.

Giteye[23] and most of the other visualizations are relatively conventional, simply

acting as a cleaner version of Gitk. GitLab[15] and GitHub[14] are both online reposi-

tory hosts, with visualization and summarization provided as well. While the GitLab

visualization does not appear to provide any additional information, the visualization

provided by GitHub takes advantage of additional internal knowledge to display infor-

mation about forks. Through this visualization, GitHub displays the branch history

of the repository network, including the branches of the main repository and forks
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Figure 2.11: Gitg interface from the Gnome project[16]
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from that.

With the exception of Gitk and Gitg, no GUI visualizers are able to produce a

visualization for the Linux repository, due to its size: the GitHub visualizer displays

an error message, stating that there are too may forks to display; the GitKraken

interface will freeze and eventually crash while trying to load the repository; Giteye

and the other visualizers will consume all of the system memory before they are able

to produce a visualization. The Gitk interface is the least polished, but is able to

produce a visualization of the repository.

Figure 2.12: Screenshot of Giteye DAG view of a repository[23]

Figure 2.13: GitHub online network view of a repository[14]
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Figure 2.14: GitLab online graph view[15]
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2.2 Git

Commits are the core of git repositories, storing the patch representing the changes

being made to the files in the repository, and metadata about when the change was

made, and who made the change. In the metadata, commits store an author, an

authordate, a committer, and a commit date, and an ordered parent list of the commit

hashes. The author is the person who first created the patch and issued the commit

command. The author date is when the commit was first created. The committer and

commit date contain the person who most recently updated the commit, and when

that update was made. This metadata is exemplified in Figure 2.15 for a commit and

merge.

Figure 2.15: Screenshot of commit metadata for a commit and merge in the repository
of this thesis.

Commits are immutable; a commit cannot be modified once created. When a

commit needs to be updated, a new commit is created, the original metadata is

copied to the new commit, the relevant changes are made, the comitter and commit

date are updated, and the original commit is deleted. If other commits have the

original commit as one of their parents, they are updated in the same manner to

reflect the new parent. This happens recursively until all descendants of the original

commit have been updated to reflect the new commit hash.

The patch contains the changes being made, including the filenames, the line

numbers, and the actual change, as shown in Figure 2.16

Rebasing will also change the committer and commit date.
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diff --git a/include/linux/compiler.h b/include/linux/compiler.h

index eca8ad75e28b..043b60de041e 100644

--- a/include/linux/compiler.h

+++ b/include/linux/compiler.h

@@ -517,7 +517,8 @@ static __always_inline void __write_once_size(volatile void *p, void *res, int s

# define __compiletime_error_fallback(condition) do { } while (0)

#endif

-#define __compiletime_assert(condition, msg, prefix, suffix) \

+#ifdef __OPTIMIZE__

+# define __compiletime_assert(condition, msg, prefix, suffix) \

do { \

bool __cond = !(condition); \

extern void prefix ## suffix(void) __compiletime_error(msg); \

@@ -525,6 +526,9 @@ static __always_inline void __write_once_size(volatile void *p, void *res, int s

prefix ## suffix(); \

__compiletime_error_fallback(__cond); \

} while (0)

+#else

+# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)

+#endif

#define _compiletime_assert(condition, msg, prefix, suffix) \

__compiletime_assert(condition, msg, prefix, suffix)

Figure 2.16: Example of a commit patch from the Linux kernel repository from
commit c03567a8e8d5.
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The parents of a commit are the next commits toward the initial commit. The

first parent in the list is the commit that is on the same branch as the commit that

is being created, i.e, the branch that the other branches are being merged into. The

remaining commits are the branches being merged, in the order that they are specified

in the merge. A non-merging commit will only have one parent.

To clarify the difference, non-merging commits are referred to as commits and

merging commits as merges. In the scope of this thesis the term, repository event or

simply event is used to refer to either a commit or a merge.

Integration is the process by which the changes in a commit are propagated to

the master repository. A small change with few dependencies is easier to integrate

than large changes. Many times, small changes that are localized contain bug fixes

or small changes to documentation. An example of this from the Linux repository is

shown in Figure 2.17.

Figure 2.17: Example of a merge that only integrates a single commit

Large changes may be broken down into smaller changes and committed sepa-

rately. The set of these commits combined represent the full implementation of the

change, which represents a logical separation from the rest of the code, and should be

merged separately. A large set of changes may be necessary to implement an entire

feature. Each of these large changes may be merged into a feature branch before

being integrated into the project.

To understand how a commit is integrated, it is necessary to understand the

merges that the commit was propagated through, and which commits are integrated

with it. In order for a commit to be integrated, it must be propagated to the master

branch. Merging commits is the process of integrating them. The other commits that

are merged with the commit are also necessary for the given commit to be integrated

in a meaningful way.

2.3 Directed Acyclic Graph

To allow for the flexibility needed for a distributed version control system, git uses a di-

rected acyclic graph (DAG) to model the relationship between events. The repository
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events make up the nodes in the graph, and the child-parent relationship represents

the edges. Commits will have a single parent, which is the repository event that is at

the head of the current branch at the time that the commit is created. Merge nodes

have an ordered list of parents4, each parent is the head of each branch being merged.

The first parent is the head of the current branch, and the other parents are the

heads for the other branches being merged, in the order that they are specified in the

merge command. Every repository will have at least one initial commit, which will

have no parents, but it is possible for repositories to have multiple initial commits.

Furthermore, it is possible for the graph of a repository to be disconnected; branches

that do not interact with the master branch are referred to as orphaned branches.

The model is simple, but flexible. The flexibility of the model makes it more

difficult to reason about, stricter models are easier to reason about since the model

must follow more rules.

For example, many version control systems have a well-defined notion of the mas-

ter branch. In SVN, this is referred to as the “trunk” branch. There is a single trunk

branch, and it is well-defined, it won’t be confounded with another branch. The DAG

model in git does not explicitly define a master branch, or even enforce the require-

ment that one exists. Instead, the idea of the master branch is a social construct used

to identify where releasable code should be merged into, and where the final product

will be released from. This relies on the discipline of the people committing code to

the repository to maintain a well-defined master branch.

The convention in git is that the first parent of the current commit was made to

the same branch as the commit. Using this definition it is possible to define the set

of commits in the branch as those that are long the first-parent path up to the first

place where the first-child of the first-parent is not a commit of the branch. Using

the example in Figure 2.18, branch B consists of nodes 6, 4, and 2. Branch A consists

of nodes 7, 5, 3, and 1.

Git has no internal safe-guards to protect branches from obfuscation. When cer-

tain conditions are met, it is possible to perform an action on the repository which

results in commits to appear as if they were performed as part of a different branch.

The series of steps to swap branches is called a foxtrot5.

It is necessary for multiple repositories to be interacting for a foxtrot to occur.

4It is possible for a merge to have many parents, commit 2cde51fbd0f3 has 66 parents
5See http://bit-booster.blogspot.ca/2016/02/no-foxtrots-allowed.html for a full de-

scription of the issue

http://bit-booster.blogspot.ca/2016/02/no-foxtrots-allowed.html
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Figure 2.18: A small example of a sequence of commits and merges. The branch
pointer A references commit 7, which merges the head of branch B, commit 6, into
the original head of branch A, which was commit 5. Merge 7 is the most recent change
to the repository.
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The following is a short example of the series of steps in the foxtrot, also shown in

Figure 2.19. Bob and Alice have both made local clones of a remote repository and

are making changes to the master branch of their local repository. Bob and Alice

both make local changes to the same file in the repository and commit those changes

into the same branch. Alice pushes her changes to the repository first, which results

in a fast-forward merge of the remote branch. Alice’s commit is clearly pushed to the

master branch. Bob attempts to push, but the push fails as his repository is not in

sync with the remote branch anymore, so Bob pulls. The pull merges the difference in

the remote branch into the local branch. Alice and Bob edited the same file creating a

merge conflict, so Git cannot perform a fast-forward merge. Bob resolves the conflict

and a merge commit is created to store the resolution. The head of Bob’s local branch

at the time of the pull is the first parent of this merge commit, and the changes made

by Alice are the second parent. With the merge conflict resolved, Bob pushes the

changes back to the remote branch. Prior to Bob pushing his changes to the remote

repository, Alice’s commit was at the head of the master branch. After Bob’s push,

this information is lost, and it appears that Alice’s commit was merged into the master

branch by Bob. This sequence of operations swaps the branches: the commits that

were in remote’s master now appear to be made to a separate branch and merged into

the master branch, while Bob’s commits appears as if they were made to the master

branch. The merge commit that merges the remote master branch into Bob’s master

branch is the foxtrot merge.

The effect of this can have different repercussions depending on the project. In

the best case, the repository visualizations will not give an accurate visualization of

how commits were integrated into the project, which may lead to confusion. In a

more serious situation, a specific branch is considered to be the stable branch, where

only code that has been reviewed and tested is accepted. When a regression occurs,

the project may need to revert back to a previous stable state, where the regression

is not present. This requires the ability to find and track the master branch, which

may be confounded by a foxtrot. Picking the incorrect commit to revert to could lead

to serious consequences. In the Linux project, the merges to the master branch are

the code that Linus has reviewed and accepted into the mainline kernel.

As mentioned earlier, the nodes in the DAG are immutable; once a commit or

merge is created, it cannot be changed. Git allows operations to alter the events

and re-order them, but this will create a new event with a new commit hash. This

property makes it impossible for nodes to store information about their children, and
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Alice’s Repo. Origin Repo. Bob’s Repo.

The original repository

Alice has made a local clone of
the remote repository Origin.

Bob has made a local clone of the remote
repository Origin.

Alice makes some changes and
commits them to her local
repository.

Bob makes some changes to the same file
as Alice and commits them in his local
repository.

Alice pushes her changes back
into the master branch of the
remote repository.

The remote repository reflects the push by
fast-forward merging Alice’s master branch into
the remote master branch.

Bob is not made aware of these changes
yet.

Bob attempts to push, but this results in
a merge conflict.

Upon fixing the merge conflict, the pull
merges the remote master branch into
Bob’s master branch.

Bob’s changes are pushed to the remote.

Figure 2.19: The sequence of steps that are part of the foxtrot, from the point of view
of each repository. Alice’s commit (2) is pushed to the master branch but, as a result
of the push by Bob, the master branch has been swapped with Bob’s branch. This
type of merge (4) is called a foxtrot.
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(a) In the simple case, it is relatively easy to see that a231d is merged
into 6bf99, which is then merged into 545ea.

(b) As the number of merges that a commit passes through increases, it
becomes more challenging to understand how the commit is integrated.

Figure 2.20: The git graph visualization of two sections of the Linux repository.
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in extension, how the commit is being merged, as this information is not available

when the commit is created. Git provides the command git log --children, which

traverses the DAG and inverts the edges. The next child on the path of children that

is a merge is the first merge on the path to the commit being integrated.

The graph combined with the child information gives most of the information nec-

essary for understanding how the commit is merged into the master branch; however,

information about the specific merge into the master branch is still missing. Further-

more, the graph itself is not always easy to understand, as shown in Figure 2.20. This

figure contrasts the levels of complexity that can be found in a given section of the

Linux kernel repository.

Most repositories are simple enough that it is possible to identify how commits

are integrated using the visualizations of the DAG that are available with the current

tools. Difficulties arise in larger repositories. The master branch can be confounded

due to foxtrot merges, making it difficult to identify merges to the master branch.

Sheer number of commits being added to various branches at a given time can make

it difficult to understand which branch a commit is being added to.

2.4 Linux

The Linux repository itself is complex, containing tens of thousands of commits and

thousands of merges per year. Older versions of the kernel are used in a wide variety

of situations including various Linux desktop distributions, IOT device firmware, web

servers, spacecrafts6, and in mobile devices as the kernel of the Android platform.

These kernels are sometimes modified forks of the official Linux kernel, made to be

more suitable for the specific needs of the application. Due to these application-

specific modifications, it is not feasible to update to the latest version of the kernel.

While it may not be feasible to update to the next version of the kernel, the changes

being made to the official version are necessary as they fix bugs, patch security issues,

and improve performance. Due to the sometimes critical nature of the patches being

merged into the current version of the kernel, it is necessary for maintainers working

on an application-specific fork of the kernel to sift through the commits coming into

the official version, looking for changes that may impact the kernel that they are

maintaining.

6Linux is used heavily at SpaceX https://lwn.net/Articles/540368/

https://lwn.net/Articles/540368/
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Linux itself follows strict development practices, which reflect in the structure

of the repository. Linus Torvalds is the only contributor with write-access to the

master branch and is able to accept or reject commits and merges as he chooses.

This ensures the quality of the commits into the kernel, as well as maintaining a

high level of consistency in how commits are merged. Under Linus are a handful of

primary maintainers who accept changes related to a specific subsystem of the kernel.

For example, Andrew Morton manages the memory management of the kernel, while

David Miller handles the changes for networking subsystem, as well as the changes

to the SPARC implementation. The primary maintainers collect patches that are

related to the part of the kernel that they are maintaining, verify that the patches

meet the quality requirements of the kernel, and pass them to Linus, who merges

them into the master branch.

This structure is reflected in the repository graph. Linus merges commits based on

the subsystem that the commits are changing. Within the merge that groups changes

to the networking subsystem are commits related to networking and a merge for

wireless networking. In the merge for wireless networking are additional merges that

group commits that make changes to wireless networking technologies like bluetooth

and mac80211. Merges are used in the repository in the same way that directories

are used in a file system, grouping related information.

The model, visualizations, and tool presented in this thesis take advantage of the

consistency of the repository, as well as the structure. While the work presented

herein is designed for the Linux repository, other repositories with nested merging

and highly-consistent merging practices can take advantage of this work.

The remainder of this section provides a summary of the Linux kernel repository.

The analysis of the repository involves all merges into the master branch between

April 18, 2005 and August 14, 2014. This corresponds to the merges added to the

kernel between versions 2.6.11 and Linux 3.16. This thesis does not attempt to

analyze the commits to the Linux repository prior to the switch to Git in 2005. The

commits collected from the repository include commits authored between September

17, 2001 and December 6, 2014. There are 4 commits in the dataset that are beyond

this range due to the date being incorrectly set on that developer’s machine. There

is one incorrect date that is dated January 1, 1970, authored by Ursula Braun, and

three commits dated after 2014 (these commits are dated April 5, 2019, October 14

2030, and April 25 2037, authored by Len Brown, Yanmin Zhang, and Daniel Vetter,

respectively). Commits are not necessarily merged immediately after being created,
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all commits were merged into the kernel between April 15, 2005 and October 14,

2014. This breakdown of the kernel data focuses on the commits integrated into

kernel versions Linux 3.1 to Linux 3.16, translating to the merges between July 21,

2011 and August 3, 2014.

As expected, the Linux kernel is highly collaborative and is very active. Between

1000 and 1500 authors have contributions accepted into the official kernel per release

(shown in Figure 2.21). These authors contribute between 8000 and 14000 commits

per release (Figure 2.22). Between 275 and 400 merges integrate the commits into the

master branch of the kernel per release (Figure 2.22). The Linux kernel repository

is a prime example of a successful open source project, exemplifying the collabora-

tive nature of modern software development. The sheer number of commits being

contributed make the task of filtering the important or relevant commits difficult.

Linux 3.1 Linux 3.2 Linux 3.3 Linux 3.4 Linux 3.5 Linux 3.6 Linux 3.7 Linux 3.8 Linux 3.9 Linux 3.10 Linux 3.12 Linux 3.14 Linux 3.16
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Figure 2.21: Unique authors with contributions to each kernel version

While the number of integrating merges into the master branch appears to be

decreasing slightly per release, the number of commits per release is increasing. The

average (mean) number of commits per merge per release has increased from slightly

over 20 commits per merge into the master branch in Linux 3.1 up to 50 commits per

merge in Linux 3.16 (Figure 2.24).

Grouping the commits by the merge that integrates the commit into the master

branch and taking the median number of commits per merge shows a different view

of the kernel repository. Each individual merge contains relatively few commits; 25%

of the merges integrate only a single commit, and 50% of the merges merge at most

7 commits and merges (Figure 2.25).

The results of this digression show that breaking the commits based on the merge
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Figure 2.22: Commits per release from Linux 3.1 to Linux 3.16
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Figure 2.23: Merges per release from Linux 3.1 to Linux 3.16
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Figure 2.24: Commits per merge into each release of Linux from 3.1 to 3.16
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should provide a means of creating useful visualizations. Seven commits is trivial to

visualize, while attempting to visualize the entire graph is not.
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Chapter 3

Merge-Tree Model

This chapter introduces the Merge-Tree model, the algorithm used to convert the

DAG into a set of Merge-Trees, and an evaluation of the results produced by the

algorithm. The model is designed to show how a commit is integrated into the Linux

repository. In order to determine how a commit is integrated, it is necessary to

identify the integrating merge into the master branch, the merges that the commit

passes through on the way to the master branch, and the other commits that are

merged with it. The model and algorithm take advantage of properties of Linux

kernel repository that likely won’t generalize beyond this repository. The algorithm

will still run and produce results, but the results will likely not be meaningful.

Linus enforces a strict merging discipline in the Linux kernel repository. This

ensures that the first parent of the merge commit is the head of the branch that is

being merged into at the time the merge commit is created. That is, if a branch is

being merged into the master branch, the first-parent of the merge commit will be

the previous head of the master branch. If this property is broken, the results will not

be meaningful as the trees will show how commits are integrated into a non-master

branch. Repositories where a weaker merging discipline is used may include foxtrot

merges, described in Section 2.3.

The Linux kernel project merges commits in logical groups, similar to the files

in a directory structure. This results in many layers of merging, where each merge

can be used as a means of filtering unrelated commits. Many repositories, including

the OCaml and LLVM repositories, commit everything directly to the master branch,

like how commits are made in SVN repositories. The algorithm will produce trees for

these repositories, but the results will be a single tree for every commit, as they are

all integrated directly into the master branch without passing through any merges.
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The Linux repository is large; thousands of commits are merged into the Linux

kernel repository per year. Directly visualizing all of the information in a meaningful

way is difficult, or potentially impossible. Dividing the commits based on the merge

into the master branch results in groups that are relatively small, the median size of

the merges is seven items. This is visualized in Figure 2.25. A merge into the master

branch is atomic, all of the context necessary for integrating a commit is available at

the merge into the master branch. If a previous commit needs to be fixed after being

integrated, the fix will be integrated in a future merge. If the issue is caught before

the initial commit reaches the master branch, the fixing commit may be one of the

commits that was integrated with the original commit. Showing only the commits

that are merged into the master branch together filters the number of events down to

a manageable size, while still containing all of the information necessary to determine

how a commit is integrated, and other commits that are integrated with it.

1

2

3

4

5

6

7

8

9 10

11 12

Master Repo A Branch of Repo A Repo B

t0 t1 t2 t3 t4 t5 t6 t7 t8

Figure 3.1: An example sequence of events performed in different repositories. The
horizontal axis represents time. The branches and repositories are aligned horizon-
tally, and color-coded. Each commit points to its parent. The initial commit is at
time t0, and the head is at t8.

The Merge-Tree model is a tree structure, rooted at the merge into the master

branch. The leaves of this tree are the commits and the merges are the inner nodes.

The parent of a node is the next merge on the path to the root. Merge trees are

constructed recursively. Starting at a commit, we walk up the children of the DAG

until the first merge is found. All of the nodes that were traversed on the path to

that merge are children of the merge in the Merge-Tree. Commits can be merged in
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Figure 3.2: DAG representation of the commits represented in Figure 3.1. The DAG
loses information about which repository the commit is performed in and through
which merges it has passed on its way to the master branch. The DAG does not even
distinguish the master branch from other branches.

1 4 11 12

75 92

3 6 8

10

Figure 3.3: The Merge-Trees computed for each commit in Figure 3.2 showing the
path that each commit takes to be merged into the master branch of the repository.
This does not indicate how the events being merged are related. This figure retains
the numerical order of the events, but the order is arbitrary.
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multiple places. The true parent of a commit in the tree is defined by the shortest

path. In the case that there are the same number of intermediate nodes between the

commit and the root, shortest distance in time between when the commit was created

and merges is used as a tie-breaker. The structure recursively groups commits that are

merged together, making it easy to identify the commits that are integrated together.

Commits have a single path to reach the master branch, which makes identifying the

series of merges to the master branch and, in extension, how the commit is integrated

into the master branch of the master repository, much easier.

The structure makes it easier to understand how commits are grouped and in-

tegrated. This model simplifies and prunes the information from the DAG, it also

inverts the parent-child relationship. The parent of a node in the DAG is the child of

that node in the Merge-Tree.

In addition to identifying the path that a commit took to being merged, it is pos-

sible to aggregate commit metadata at merges. Merges in the Merge-Tree are aware

of their children, which is information that is not available in the DAG. Recursively

traversing each child and aggregating the metadata from each commit produces an

aggregated summary of the merge. The merges in the DAG are not aware of their

children.

To illustrate this model I will use a small example: assume the commits repre-

sented in Figure 3.1 show the sequence of events in a repository. The sequence starts

with the initial commit in the master branch of the master repository at time t0.

Repository event 1 is a commit, which gets forked into a separate repository, Repo A,

where another commit is made, event 2. Event 5 is a merge event, merging events 2,

3, and 4 into Repo A. A branch created from event 5 and commit 6 happens in the

new branch, while commit 7 is added simultaneously to the original branch in Repo

A. Events 11 and 12 are both merge events, merging changes made in Repo A into the

master branch of the master repository. As every repository is a first-class repository,

including local copies and forks, git does not distinguish between forked repositories

and branches, and in neither case does it explicitly record where a commit was made.

In this case, commits are performed in various repositories and branches. The DAG

representation of these events is shown in Figure 3.2.

The commit nodes do not preserve branch information, which allows users to re-

name branches and repositories without having to update the preceding commits.

This is at the expense of maintaining a consistent history. It is desirable to recon-

struct all of the branch and repository information, shown in Figure 3.1, from the
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information in the DAG, shown in Figure 3.2, but this may not be possible. Git does

not retain information the branch that a commit comes from, relying entirely on the

order of the parent list. A foxtrot will confound this list, making it impossible to

correctly re-generate the series of events to produce the repository. Instead, the focus

is placed on finding the next merge that leads toward the integration of a commit.

Depicted in Figure 3.3, is the first version of the Merge-Tree. It does not completely

rebuild the lost information, but is able to show the sequence of merges that a commit

follows to be integrated, and the commits that were involved with the integration.

This is the version of the Merge-Tree that is used in the visualizations, in the con-

struction of Linvis, and in the user study. This tree does not preserve the ordering

of the commits within the merge, and while the algorithm presented in Section 3.1

preserves this information, the visualization in Linvis does not make use of it.

Using the depth of the node from the root of the tree, the branch information is

reconstructed. In our events, nodes 2, 5, 7, and 9, are all on the same branch, and are

merged into node 11. Nodes 5 and 9 are merge nodes, 5 merges a single commit into

the branch, and 9 merges two nodes into the branch. The traversal may not find first

integrating merge for a given commit. Node 9 is merged into 11, though the traversal

through 9 will eventually reach node 12 as well. There is one merge to integrate 9

into either node 11 or node 12, so the shortest distance through time is used to break

the ambiguity, selecting node 11.

3.1 Algorithm

Computing the Merge-Tree from a DAG for any repository may not be possible;

however, certain features of the development process of Linux make it feasible to

compute the Merge-Tree for the Linux repository. Linus Torvalds is the only one

with merge access to the master branch of the Linux kernel repository, verified by

German [13]. Linus enforces a strict merging discipline, which limits the number of

foxtrot merges entering the master branch. By keeping a clean master branch, the

Merge-Trees are rooted correctly in the master branch. The heuristic for determining

which commits are along the master branch relies on this property being true.

In short, the algorithm first identifies the commits made directly to the master

branch, where after it recursively determines the shortest path, using the DAG, from

each commit to the master branch using the inverted DAG.

The algorithm has two phases. The first phase identifies the commits along the
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Algorithm 1 Computing the Merge-Tree of Linux from the DAG

1: function ComputeMergeTree(DAG): tree
2: head← Head of master of git repository
3: master ← traverse DAG from head using
4: first parent until reaching root
5: nodes(Tree)← nodes(DAG)
6:

7: function MergeAtMaster(cid)
8: # Returns (depth,merge, next)
9: # Helper function
10: # Compute the closest merge into master,
11: # setting the children on the way to master.
12: if cid in master then
13: return (0, cid,∅)
14: end if
15: d←∞
16: # Traverse the inverted DAG
17: for c ∈ children(cid,DAG) do
18: (dc,mergec, nextc)←MergeAtMaster(c)
19: if IsMerge(c) then
20: fp← FindFirstParent(c)
21: if fp 6= cid then
22: dc ← dc + 1
23: nextc ← c
24: end if
25: end if
26: # Find the shortest path
27: if dc < d then
28: (d,m, next)← (dc,mergec, nextc)
29: else if dc = d then
30: # Use the time as a tie-breaker
31: if cT ime(mergec) < cTime(m) then
32: (m,next)← (mergec, nextc)
33: end if
34: end if
35: end for
36: # c is the commit that follows cid on it’s way to master
37: add edge (cid, next) to Tree
38: return (d,m, next)
39: end function
40: # Compute the distance for each commit discarding result
41: for c ∈ nodes(DAG) do
42: MergeAtMaster(c)
43: end for
44: return Tree
45: end function
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master branch. This is done by traversing the first parent from the master branch

reference to the commit that has no parents. Multiple initial commits will not have

an effect on this phase. The initial commit that is along the first-parent traversal of

the master branch will be the one selected.

The second phase is encompassed by the function MergeAtMaster which deter-

mines, for each commit, which merge the commit is merged at, the depth (as variable

d in the algorithm), and the next merge on the path to the master branch. The

function MergeAtMaster has two parts, the first for determining the depth, from

the master branch, that the repository event is at. The second phase determines the

merge into the master branch, and the next merge on the way to the master branch.

The distance is computed by shortest path close to the master branch as possible. If

there is a tie between two paths, the path that merges into the master branch sooner

is taken.

An example is used to demonstrate the behaviour of the algorithm, computing the

merge at commit 5 in Figure 3.1. MergeAtMaster, recurses along the children of the

nodes it visits. Eventually every child of every node along the path will be visited at

least once. Without loss of generality, suppose that the path recursed along is from

node 5 to 6, 9, 10, and finally 12.

The depth for each, except 12 (a merge into the master branch), is initialized to

infinity, the merge into master is blank, and the next merge is blank. Merges into

master trivially have a distance of 0 from the master branch, and it merges itself into

the master branch. The recursion at 12 returns the triple (0,∅, 12) to the call from

10. 12 is a merge commit and 10 is not the first parent, so the temporary depth,

dc, is incremented to 1 and the temporary next merge, nextc, is changed to 12. 1

is less than infinity, so the depth is set to 1, the merge to 12, and the next to 12.

This returns the triple (1, 12, 12) to the call from 9. 9 is the first parent of 10, so no

changes are made to the temporary variables.

The call to 9 recurses to the second child, 11. 11 is a merge into the master so

it returns (0,∅, 11) to the call from 9. 9 is not the first parent of 11, so the dc is

incremented to 1 and nextc is changed to 11. The distances dc and d are the same,

so time is used to break the tie. 12 was merged after 11, so 11 replaces 12 as the

merge into the master branch for 9, as well as being the next merge. The call for 9

returns the triple (1, 11, 11) to the call for 6. 6 is not the first parent of 9, so dc is

incremented and nextc is changed to 9, as 9 merges 6. 2 is less than infinity, so the d

is changed to 2, the merge to 11, and the next merge to 9. The call to 6 returns the
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triple (2, 11, 9) to the call for 5.

The call for 5 recurses on the second child of 5, calling on 7, which calls 8, and

then 9. 9 can continue, but if the implementation of the algorithm uses memoization,

the call to 9 can immediately return the triple (1, 11, 11) to the call for 8, and avoid

an exponential runtime. 8 is not the first parent of 8, so dc is incremented to 2 and

nextc is changed to 9. 2 is less than infinity, so d is changed to 2, merge to 11, and

next to 9. The call to 8 returns the triple (2, 11, 9) to the call for 7, which recurses

on the second child of 7, 9. 9 returns the triple (1, 11, 11). 7 is the first parent of 9,

so the depth is not incremented. dc is less than d, so d is changed to 1, m to 11, and

next to 11, returning (1, 11, 11) to the call for 5. dc is less than d, so d is changed to

1, m to 11, and next to 11. There are no other children, so the function halts.

3.2 Algorithm Evaluation

The merge trees generated by the algorithm must be validated to ensure that they are

an accurate representation of the events occurring in the repository. Evaluation poses

some issues, as there is no easy way to accurately gather this information directly from

the DAG. Further inspection of the merges provides some insight; Linus Torvalds adds

useful information about the content of the merges. For each branch being merged,

Linus includes either the first 20 commit titles and the total number of commits being

merged (see Figure 3.4 for an example), or if there are 20 or fewer commits being

merged, the list of commit titles.

This information is used to verify that the results of the Merge-Tree algorithm

are consistent with the information explicitly stated in the merge log. A program

extracts the merges made by Linus into the master branch of the repository. The

merges are gathered by two commands;

git log --merges --author=’Linus Torvalds’ v3.16 collects the merges by Li-

nus Torvalds, and git log --format="%H" --first-parent --merges v3.16 col-

lects the merges that are along the master branch, assuming that the master branch

is not confounded. The intersection of the results of the two commands leaves the

set of merges made by Linus Torvalds into the master branch. The results of the

algorithm were collected up to version 3.16, which is why the set of merges must be

limited to that version. For each merge in the intersection, the program extracts the

number of commits, commit titles, commit date, and authorship date from the merge

log and compares them against the corresponding generated Merge-Tree.
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commit 3d30701b58970425e1d45994d6cb82f828924fdd

Merge: 8cbd84f2dd4e fd8aa2c1811b

Author: Linus Torvalds <torvalds@linux-foundation.org>

Date: Tue Aug 10 15:38:19 2010 -0700

Merge branch ’for-linus’ of git://neil.brown.name/md

* ’for-linus’ of git://neil.brown.name/md: (24 commits)

md: clean up do_md_stop

md: fix another deadlock with removing sysfs attributes.

md: move revalidate_disk() back outside open_mutex

md/raid10: fix deadlock with unaligned read during resync

md/bitmap: separate out loading a bitmap from ...

md/bitmap: prepare for storing write-intent-bitmap ...

md/bitmap: optimise scanning of empty bitmaps.

md/bitmap: clean up plugging calls.

md/bitmap: reduce dependence on sysfs.

md/bitmap: white space clean up and similar.

md/raid5: export raid5 unplugging interface.

md/plug: optionally use plugger to unplug an array ...

md/raid5: add simple plugging infrastructure.

md/raid5: export is_congested test

raid5: Don’t set read-ahead when there is no queue

md: add support for raising dm events.

md: export various start/stop interfaces

md: split out md_rdev_init

md: be more careful setting MD_CHANGE_CLEAN

md/raid5: ensure we create a unique name for ...

...

Figure 3.4: Example of how merges record a subset of commits being merged. The
commit only shows the first 20 one-line summaries messages for the 24 non-merge
commits it merged. The ending “. . . ” is part of the log and represents that other
commits were merged.
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The results of the analysis found that 14670 merges along the master branch were

found in both the results of the Merge-Tree algorithm, and the git logs. Two merges,

186051d70444 and 5170a3b24a91 were found in the logs, but were not in the results

of the algorithm, and 426 merges in the set of Merge-Trees, but not in the logs.

The two merges in the logs, but not in the Merge-Tree were likely due to a fast-

forward merge on the master branch. As git does not maintain the information

necessary for distinguishing commits added by a fast-forward merge from commits

committed directly to the branch, the only way to verify is to ask the person making

the merge, and given that these merges were made 13 years ago, the truth has likely

been lost to time. The graph for merge 186051d70444 is show in Figure 3.5. Each

commit in the merge will produce a separate Merge-Tree.

Figure 3.5: Merge 186051d70444 graph view, showing that the merge into master is
immediately followed(above) by a non-merging commit.

Conversely, many of the merges and commits that were in our database but not

found in the logs were due to the foxtrot merges. The commits were detected as being

part of the master branch when inserting the commits into the database, but were

not collected by our git log query since they were not authored by Linus Torvalds.

Beyond investigating why merges show up in either the database or logs, further

analysis requires that the merges are present in both the database and the merge log.

There are 14198 merges with these properties.

The results of the evaluation are summarized as follows:

• Five merges did not have matching commit counts between the database and

the logs. Upon further investigation, four merges had incorrectly formatted

logs. The fifth merge, 42a579a0f960, is a foxtrot merge. One commit is on

the first-parent of the merge, and is therefore not detected when building the

Merge-Tree, but is included in the merge log.

• The heuristic worked correctly until September 4, 2007, the earliest date that



43

could be verified. Before this date, merge logs did not include a summary of

the commits being merged, making it impossible to verify. Manual inspection

indicates that the heuristic worked correctly for these commits, until December

12, 2006 where a foxtrot merge occurs.

• There is one merge after September 4, 2007 that does not have recorded commit

logs. This is due to incorrect formatting. If it were correctly formatted, it would

report having 15 commits integrated, which is consistent with the results in the

database.

• The algorithm breaks on merges prior to December 12, 2006 due to a foxtrot .

There were 1537 merges made by Linus prior to this date, according to the

commit metadata. While we do not know exactly which commits, or how many

were being integrated at a given merge, the commit retains metadata about

who wrote it. In this case, these commits were not authored by Linus, who is

the only one who has merge access to the master branch.

• 77 Merges were made by Linus into non-master branches after September 4,

2007. These merges were made into 3f17ea6dea8b, which is exceptionally large

containing 7217 repository events, 6809 of which are commits, shown in Fig-

ure 3.6.

There were 12837 merges after September 4, 2007. With the exception of the

five merges, four with errors, and one as part of a foxtrot , all merges were correctly

identified. The 835 merges between December 12, 2006, and September 4, 2007,

appear to be correct, but cannot easily be verified. The algorithm breaks on 1537

merges prior to December 12, 2006.
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Figure 3.6: The largest Merge-Tree, made by Linus Torvalds into Linux 3.16. This
visualization clusters nodes based on the parents. The visualization is explained in
more detail in Section 4.3.3.
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Chapter 4

Design and Implementation

A model is difficult to assess directly, instead it is possible to convert the model into

visualizations, which can be assessed as a proxy to the effectiveness of the model.

This chapter presents various visualizations that take advantage of the Merge-Tree

model, and a tool, called Linvis, that uses these visualizations.

Linvis is designed with two uses-cases in mind, though a user may freely switch

between the cases as they work. Both use-cases are designed with maintainers in

mind.

Use-Case 1: top-to-bottom approach

These users are maintaining a portion of the kernel and would like to pick an

entire merge, including all commits being merged, to inspect and potentially

merge it directly into their version of the kernel.

These users do not have a specific commit in mind.

Use-Case 2: bottom-to-top approach

These are maintainers that start with a given commit and would like to un-

derstand what other changes are being made to integrate this commit. This

is done by understanding the merges that the commit passes through toward

integration, and finding the commits that are necessary for the integration

of a given commit.

These users do have a specific commit in mind.
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Linvis uses full-text search to find the merges and commits that the user is in-

terested in, and provides two summarization views, and three visualizations of the

Merge-Tree for the repository events.

4.1 Search

Linvis provides a search engine for navigating within the kernel repository. The search

engine finds the merges and commits that are relevant for a given query. The results

are then sorted based on the relevancy to the query. Relevancy is computed by

weighted similarity, taking into account the contents of the commit log, the author

name, the filenames, the commit hash, the date the commit was authored, and the

date the commit was committed. More information about the design of the search

engine are available in Section 5.2.1.

Before presenting the results, the commits and merges are grouped by Merge-Tree

root. Each group of events has the link to the root at the top, followed by a table of

the relevant commits and merges from that tree, shown in Figure 4.1. The table of

results includes the relevancy rank assigned by the search engine, commit preview,

author, commit date, and the authored date. The Merge-Trees are ordered by the

mean of the relevancy scores.

4.2 Summarization

Linvis uses seven tabs to present the information and visualizations for a selected

repository event. The informative tabs are: messages, files, modules, and authors.

The visualization tabs are: list tree, pack tree, and Reingold-Tilford tree.

The message tab shows the full commit log message. This does not include the

patch, but given a commit hash, the patch can be found directly from the repository

with the git show command, or using other tools.

The files tab shows the list of files that were modified in a merge or commit. The

table includes the number of lines added, lines removed, total lines modified, and the

difference between the number of lines added and removed. Each metric is aggregated

across each commit within the merge. A details drop-down button allows a user to

see exactly which commits make the changes, as shown in Figure 4.2.

The modules tab shows the modules modified in the Merge-Tree. Like the files

tab, the modules tab uses a table to show the name of the module, the number of
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Figure 4.1: Two Merge-Trees returned from the query for “net-next”. The top search
result contains multiple entries with the search term in the title, whilst the second
result contains a single entry with the search term in the title. The groups provide a
link to the root at the top, and the relevant commits in the table below.

Figure 4.2: Table showing the modified files in a merge, with the second entry ex-
panded to show the commit that makes the changes.
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commits that are in the Merge-Tree that work with the module, and a details button

to provide the links to those commits, shown in Figure 4.3. Modules are not an

inherent part of git, but are a property of most commit log previews in the Linux

repository. The text up to the first colon in the commit log preview tends to indicate

the subsystem of the kernel that is being modified. In Figure 3.4, the first commit

is from the “md” subsystem, which virtualizes multiple physical devices into a single

virtual device.

Figure 4.3: Table showing the modules involved in a merge, listing the commits that
modify this module.

The authorship tab is similar to the files tab, but shows the authorship informa-

tion. It shows the sum of the lines added, removed, modified, and the delta within

the Merge-Tree. It also shows the number of files that were modified by the author.

The details are organized slightly differently than in the files tab. Instead of showing

the commits that make the modifications, Linvis shows each file that was modified

by this person, as well as the commit where the changes took place. As multiple files

can be modified in the same commit, commit hashes are not unique in this table.

The authors tab is shown in Figure 4.4.

4.3 Visualization

Linvis provides access to three visualizations, each with a specific intention.
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Figure 4.4: Table showing the authors who made changes in a merge. The entry for
Randy Dunlap is expanded, showing the files that Randy modified in this merge.

Figure 4.5: The List Tree Visualization
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4.3.1 List Tree

The list tree, depicted in Figure 4.5, is constructed from nested lists. The commit

or merge being inspected is shown first, and each child of the subtree is indented

recursively. If the node is a commit, only the node will be shown.

This visualization is text-based, making searching simple through the browser text

search functionality. This visualization works well with large and small trees, though

it does not give an immediate impression of the structure of the entire merge. The

visualization is designed to show the path that a specific commit takes to reach the

master branch.

Linvis also provides breadcrumbs showing the path that the current repository

event took to being merged into the root of the Merge-Tree to ensure that a user

can navigate both toward the root and toward the leaves using this visualization.

In Figure 4.5, the merge being inspected is the root node, so the breadcrumbs only

contain a single link, which is the small “8” in the top left corner of the image. The

items in the breadcrumbs are the shortest unique prefix of the commit hash in the

Merge-Tree. In small trees, this will usually be a single character.

4.3.2 Reingold-Tilford Tree

Figure 4.6: The Reingold-Tilford tree visualization with the root currently selected.
The root is at the top, the leaves are depicted as the white circles with no children.
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The Reingold-Tilford tree [22] visualization, depicted in Figure 4.6, is the classic

tree visualization. The root is at the top, leaves are at the bottom, and the edges

between the nodes showing the parent-child relationship.

The Reingold-Tilford tree was designed with the goal of producing trees that

looked tidy. Proposed by Wetherell and Shannon[25], there were three aesthetic

requirements behind the design of tidy trees:

• Nodes at the same depth in the tree must be aligned, and each level should be

parallel.

• The left and right children must be positioned to the left and right of their

parent.

• The parent should be centered above the two children.

These requirements are necessary, but not sufficient for producing visually appeal-

ing trees. Reingold and Tilford propose an additional aesthetic requirement; subtrees

should be drawn identically regardless of position in the tree, and that the reflection

of the tree should produce a mirror-image of the original tree. The entire goal is to

produce trees that are aesthetically pleasing and easily understandable. This visu-

alization works well with trees that are not exceptionally wide and can give a good

impression of how commits are integrated in smaller trees.

In our visual metaphor, the white nodes indicate a commit, while the colored nodes

indicate merges. The merges are colored in shades of blue to indicate the number of

children of that node. Darker shades of blue indicate more nodes, while lighter shades

indicate fewer nodes. The repository event that is currently being inspected will be

filled with pumpkin orange, but the outline will remain the original color. Initially,

the node representing the current repository event will be centered in the window,

and the title and author of the node are presented above the visualization. Clicking

on a node will center that node and update title and author. The title is hyper-linked

to the page for that commit, clicking on the title will navigate to the node that was

selected. Clicking and dragging will move the tree in the view, scrolling will zoom

the tree.

4.3.3 Pack Tree

The Pack Tree[24] is used for quickly displaying an overview of large hierarchical

data. The original use-case was the file system, where there are usually many files,
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but few levels of directories, creating a very wide but shallow tree. This metaphor

is directly comparable with the structure of a git repository. The commits are files,

they contain the information, rather than being structural. The merges map to the

directories, structurally grouping the commits in a logical fashion.

Figure 4.7: The pack tree visualization; the root depicted as the outer-most circle,
containing all other nodes, the leaves depicted as white circles containing no other
nodes. The currently selected node shown in pumpkin orange.

Our goal in providing this visualization is to quickly show the topology of the

merge. With the Reingold-Tilford tree, it can be difficult to understand just how big

the large Merge-Tree are, as they don’t fit on the screen. The Pack Tree uses a set

theory-like model for describing the hierarchical structure. Mapping the pack tree

metaphor with the tree, leaves are the smallest nodes, containing no other nodes.

Inner nodes contain other nodes within them and the root is the outermost circle,

containing all other nodes within it.

The bubble tree[3] was seen as a possible visualization for the trees, as it uses a

similar metaphor but due to limitations with the bubble tree, the pack tree seemed

more suitable with our goals. The initial bubble tree visualization starts with a single

circle, the root. Hovering over that circle shows the contents of the node. This works

recursively, hovering the cursor over an inner node will reveal the contents of that

node. While this is designed to prevent overwhelming users, the user cannot quickly

determine what the tree looks like without hovering their cursor over each inner node.

Due to this limitation, the pack tree was a better option.

An example of the pack tree visualization used in Linvis is depicted in Figure 4.7.

The outer-most circle that contains the other circles is the root node. Nodes that are
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not leaves are colored in a shade of blue. Darker blue indicates that the node is deeper

in the tree; the root is shaded with the lightest blue. The commits are colored white.

The node that represents the repository event that is currently being inspected will

be shown in pumpkin orange.
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Chapter 5

Implementation Details

The implementation is broken into two parts, the Linvis1 and the database. The

database uses PostgreSQL, an advanced opensource database management system.

The tool backend uses Python and the Flask framework. Both the database and

the Linvis backend are containerized using Docker. This facilitates easy migration

between the development environment and the server where the system is running.

Both components are running Alpine 3.5, a simple, light, and secure distribution of

Linux designed to run as the base of Docker containers.

This chapter contains details on the design of the database, the extraction of the

data, and the implementation of the tool.

5.1 Composition

The database, discussed in Section 5.2, and website, discussed in Section 5.3, run in

different containers, and must be linked together in order to communicate with each

other. This section describes the architecture of the system, depicted in Figure 5.1,

describing how the various components work together to produce the page.

The built-in Flask HTTP server is not designed for a production environment. It

is not designed with performance or security in mind, it is designed for debugging.

Requests must be passed through an actual web server. I chose Nginx to be the

outward-facing server, it is modern, and designed with speed and security in mind.

Nginx receives HTTP requests from a user over the internet. It converts the request

from HTTP to WSGI, a high-performance binary protocol for python applications,

1Linvis is available at http://li.turingmachine.org

http://li.turingmachine.org
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Figure 5.1: Webserver Architecture, showing the protocol used for communication
between the modules.
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and then forwards the WSGI request to the Flask application.

The Flask application runs in a Docker container, so Nginx cannot communicate

directly with the application. Nginx sends requests to the Docker network, which

applies the local equivalent of port-forwarding to pass the requests to the appropriate

container. Docker is specifically designed for working with scalable systems, so as long

as Nginx can connect to the Docker network, requests are passed to the container,

regardless of where the container is running. In our case, everything is running on

one host, but the architecture would not need to change if this were to change.

The Flask application and database are in separate containers. Since both are in

the same Docker network, they are discoverable to each other using the container name

as the host name. Again, the containers could be running on separate physical hosts,

but the Docker overlay network would hide this fact, and the system architecture

would not have to change. Requests are passed between the application and database

using the PostgreSQL protocol.

Once the Flask application has generated a response, it is sent back to Nginx.

Nginx generates the appropriate response header, setting the cache and MIME in-

formation, as well as caching the response, before sending the response back to the

user.

5.2 Database

The database is made of seven tables:

• Baseline contains the commits that have been integrated into the master branch

of the repository.

• Commits contains the metadata for each commit, including the author, commit-

ter, the date the commit was authored, and the date the commit was committed,

as well as the associated patch.

• Filesmod contains the information regarding which files were changed, and how

many lines were added and removed from each.

• Logs contains the subject and full log message for every commit.

• Releases contains information regarding which commits represent the split be-

tween versions of the kernel. It contains the version name, the commit, the
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previous version, the commit for the previous version, the previous candidate

and commit, and whether the version is a candidate.

• Search contains information necessary for the search engine. While this table

is not necessary for the operation of the tool, it is used as a cache and index,

which improves the performance of the search engine greatly. It contains the

search term vector and the associated commit hash.

• PathToMerge contains the actual Merge-Tree structures, with references point-

ing from a given commit to the next merge on the way to integration.

5.2.1 Full Text Search

The search engine uses the full text search built into PostgreSQL to enable easy

searching for commits in the database.

The engine uses pre-computed text vectors instead of re-computing them for each

query. The search vectors are pre-computed and stored in the search table, creating

a map between search terms and commit hash. The vectors include terms from

the commit hash, log subject, full log message, commit author name, commit and

authorship date, and list of files that were modified in the commit.

The search attributes are given different weight when calculating the search rank.

The attribute weights are listed in Table 5.1. The rank calculation does not normalize

against document length. The ranking system is designed to associate a higher weight

with attributes of more importance. One drawback of using full text search is that

terms must be identical to the term used in the attribute. This has two negative

effects, the first is that typos will drop commits that are otherwise relevant, and

second, the entire term must be entered. Trigraphs are a possibility for working

around this. Trigraphs break the words in the attribute into groups of three. Using

this on the commit hash, for example, would allow a user to perform a substring

search, typing only a portion of the commit hash. Unfortunately, the Trigraphs are

slower to compute, to search, and consume more memory, and therefore were infeasible

for this project.

Postgres applies stop-word elimination when constructing the search vectors; stop

words are terms that are common in a given language and won’t help when discrim-

inating items. These terms include words like “and”, “the”, and “a”. The default

English stop-words built into Postgres version 9.6.2 are used to clean the queries.
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Table 5.1: Search Attribute Ranking

Attribute Weight

Commit Hash A
Log Subject A

Log Full Text C
Author Name A
Commit Date B

Authorship Date B
File names B
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5.3 Web Interface

The tool itself is implemented as a web-interface to enable people to use it with-

out needing to install dependencies or download external files. As the compressed

database image sits at 976MB, it would not be useful for many to download it.

The application is written with asynchronous processing in mind. The pages

do not contain information that is specific to a commit or query. The pages are a

template that is later filled with commit-specific information with Javascript. Using

the asynchronous architecture has advantages and disadvantages. Since the main

part of the page is the same for every commit, it can be cached. The requests are

processed asynchronously. When a user clicks on a page, it takes nearly no time to

get most of the page showing, since it should be cached at all hops on the way back

to the server. The primary delay comes from the delay caused by the round-trip to

the server to gather the commit-specific data.

The issue is that many requests must be passed between the client and the server.

When the client requests the page, instead of getting a single response, the client will

wait for the response, then send a request for the commit-specific information. There

are different requests involved for collecting the tree, files, authorship, modules, and

message information.

The backend itself is written in Python 3.5, and uses the Flask framework to

handle routing requests and manage cookies. While flask contains a simple built-in

HTTP server, I opted to use the uWSGI server, which is more secure and runs faster,

supporting multiple worker threads. The frontend is written in Javascript, HTML,

and CSS. Bootstrap is used to produce the clean interface, and D3 generates the tree

visualizations.
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Chapter 6

Evaluation

In June 2017, I conducted a study to quantitatively and qualitatively evaluate the

effectiveness of the visualizations and summaries presented in Linvis to the DAG-

based visualizations found in Gitk and the git command-line. This chapter presents

the methodology, a profile of the participants, and the results of the study. The study

was performed in a controlled environment running Ubuntu 14.04. Participants were

allowed to use Gitk and the git command-line tools for these tasks, I will refer to both

tools as Gitk, when working with DAG-based visualizations and summarizations. I

considered allowing participants to use any of the free tools for Linux suggested on

the git website1, but after attempting to use them, found that none of the tools

listed at the time were able to operate on repositories that were as large as the Linux

repository. Linvis was used for evaluating the Merge-Tree-based visualizations.

The study has two primary goals: first determining if the DAG-based visualiza-

tion is sufficient for conceptual understanding; second, comparing Linvis and Gitk to

determine which is more capable of providing users with a summarization of various

metrics involved with integrating a commit into the repository. These were done in

two parts of the same study. They were performed together as a single study for

pragmatic reasons, but could have been done as separate studies.

6.1 Methodology

This section describes the evaluation, how it was performed, the methods used to

ensure that things were kept consistent between participants, and setting of the study.

1https://git-scm.com/downloads/guis

https://git-scm.com/downloads/guis
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The evaluation was performed as a single study, broken into two parts, using the same

12 participants and same 2 commits. The first part of the evaluation only used Gitk,

while the second part used Gitk and Linvis. The order that the participants studied

each commit was randomized for each participant, but was kept consistent through

each part of the study. Participants would complete part one of the study on both

commits, the continue with part two, before answering a few questions about their

opinions and experience in an exit interview. A screen-capture with audio was taken

for the duration of the study with each participant.

Three metrics are recorded from each task: correctness, accuracy, and the time

taken to respond. Correctness is simply whether the response was correct. Accuracy

is how far from the response was from the correct answer. An Accuracy of zero

indicates that the answer was correct. Time indicates how long the participant took

to respond. Time is measured from the end of the question to the beginning of the

final response. Since the time measures until the final modification to the answer, it

is possible for times to overlap between tasks if the participant were to change their

response after answering another question. Overlapping times occurred infrequently

through the study, but more frequently with Gitk than with Linvis.

Order bias was mitigated throughout the study through the use of randomization

between participants. In both parts, the order that the participants worked with

the commits, tasks, and tools was randomized. Participant performance, with regard

to the recorded performance metrics, between different size merges, or merges that

are merging different number of commits, is measured in both parts of the study.

The hypothesis being that it is easier to locate commits for and summarize smaller

merges. In the remainder of the thesis, merge size refers to the number of repository

events being integrated at a given merge. Two merge trees are selected from the set

of merge trees, and from each of those, a single commit is selected. The reasoning and

method for selecting the trees and commits is detailed in Section 6.1.1. The order

that the commits were inspected was randomized between participants, and were kept

consistent between parts for each participant. Where applicable, the order that the

tools were used by the participants was randomized between participants. Details on

the randomization of the tasks are outlined with the methodologies for the specific

parts of the study.

Statistical significance testing is performed to verify that the results are meaning-

ful. An α = 0.05 or a 95% confidence level is used. The first test is used to determine

if the Merge-Tree size has an effect on the result.
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If tree size does not have an effect on the correctness, accuracy, or time taken,

there is nothing interesting to be gained from analyzing the results separately and

the results are combined. This is permissible, as the data comes from the same

distribution. If tree size does have an effect on the correctness, accuracy, or time

taken, then the results must be analyzed on the individual trees. The Wilcoxon

test[26] is applied between commits to determine if the size of the Merge-Tree effects

timing and accuracy.

The second test is used to determine if there is a significant difference between

responses when the participants are using Linvis versus Gitk.

The McNemar χ2 test[19] with continuity correction is used to test if there is a

difference in the correctness of responses made by users when using Linvis versus

Gitk. The Wilcoxon test[26] and Cliff’s effect size[7] are applied to the accuracy and

timing metrics to determine the significance of the difference between the results in

Linvis and Gitk.

The resulting research questions are:

1. Are people able to draw a conceptual understanding from the visual-

ization of the DAG in Gitk?

2. Does Merge-Tree size have an effect on the correctness and accuracy of

people’s ability to summarize aspects of a merge?

3. Does Merge-Tree size have an effect on the time taken to summarize

aspects of a merge?

4. Does Linvis have an effect on the correctness and accuracy of the re-

sponses?

5. Does Linvis have an effect on the time taken to respond to questions

about the merge?

The first research question evaluates understanding based on how the participants

draw the graph and respond to questions about their drawing. The question does not
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make comparisons either, so no baseline is set for testing against. The collected results

are stated, but this question is left open.

The null hypothesis for the last four research questions are as follows:

• There is no difference in the correctness nor accuracy between Merge-Tree sizes

• There is no difference in the time taken to respond between Merge-Tree sizes

• Linvis does not have an impact on the correctness or accuracy

• Linvis does not have an impact on the time taken to respond

The study is broken into two parts, followed by a short exit survey. The first part

has the participants perform tasks and answer questions that require understanding

about how and where a commit is merged. The second part of the study answers the

remaining questions by asking the participants to summarize various aspects about

the commits being integrated with a given commit. The responses are recorded, de-

termining if the response was correct, the how far from the right answer the incorrect

answers were, and how long participants took before answering. Part one is discussed

in detail in Section 6.1.2, and part two is discussed in Section 6.1.3. After completing

part one and part two, the participants were asked for opinions in a short exit in-

terview to collect information about their prior experience with version control, and

their opinions on the tools and visualizations used in the study. The details of which

are discussed in Section 6.1.4.

Prior to conducting the study, participants were introduced to the Merge-Tree

model and the conversion from the DAG to the Merge-Tree. Two examples of how

the conversion works were given, the examples are shown in Figure 6.1. Any ques-

tions about the model or conversion were answered at this time. Then participants

were introduced to the tools, Gitk and Linvis, and could ask questions about either

interface. These introductions usually lasted no more than 10 minutes.

6.1.1 Commit Selection

Two commits are used in both the conceptual study and summarization study, with

the goal of determining how well the DAG and Merge-Tree visualizations scale be-

tween merges integrating varying numbers of commits. The order that the two com-

mits are presented to each participant is randomized. I analyzed 15096 Merge-Trees
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Figure 6.1: Two examples of DAG to Merge-Tree conversions used in explanation
during evaluation
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from the database that were candidates for the study, from April 16th 2005 to Octo-

ber 14th 2014, corresponding to Linux releases 2.6.12-rc3 to 3.17-rc1. A Merge-Tree

could only be selected if it was not a foxtrot, and had correctly been identified. 25%

of the trees contain at most a single repository event, not including the root, while

50% of the trees contain at most seven nodes. 75% of the trees contain at least 51

nodes, and the largest tree contains 7217 nodes. 8031 trees contained at least seven

nodes, of these only 593 contained at least a single internal merge node. Trivially,

trees with a single node cannot have any internal merge nodes. Of the 624 trees

with seven non-root node, only 135 contained at least one inner node. Using this

information, I chose a random tree from the 2008 trees in the first quartile, which

merges a single commit into the master branch. These trees are trivial, but appear

frequently in the repository. The second tree was chosen randomly from trees in the

second quartile. These trees contain seven nodes, and to increase the complexity of

the tree, I required that the tree contain at least one internal merge node. We limited

the selected trees to the first two quartiles to ensure that the tasks would take a

reasonable amount of time. The third quartile included trees with up to 51 nodes,

and the fourth quartile included trees with more than 7000 nodes. Given that Gitk

cannot provide aggregated summarizations due to the limitations of the graph, it is

infeasible, in a reasonable time, to aggregate information about the larger trees, even

with a conceptual understanding of which commits are involved.

Commits were selected randomly from the trees. The small tree was trivial as it

contained only a single node. A node was chosen randomly from the medium-sized

tree. The commits selected from the small tree and medium tree were a3c1239eb59c

and cdbdd1676a53 respectively. Commit 1, the commit from the small tree is visual-

ized in Figure 6.2, showing the DAG visualization by Gitk and Reingold-Tilford tree

visualization in Linvis. The same is shown for commit 2 in Figure 6.3.

6.1.2 Part 1: Conceptual Study

The conceptual portion of the study seeks to answer the first research question, “Are

people able to derive a conceptual understanding from the visualization of the DAG

in Gitk”. This part tests our initial assumption that the visualization of the DAG is

unable to provide people with a conceptual understanding of the events in a repository.

Participants in the study are asked to perform tasks that are related to understanding

how a commit is integrated. The tasks for this part of the study are outlined in
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Figure 6.2: The visualizations of commit 1 by Gitk and Linvis respectively.

Figure 6.3: The visualizations of commit 2 by Gitk and Linvis respectively.
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Table 6.1.

Table 6.1: Conceptual Tasks

Task Description

T1 Draw a diagram showing how this commit was merged into the
master branch, along with any other related commits

T2 How many individual commits are related to this commit?
T3 How many merges are involved with merging this commit into the

master branch?

Task 1 asks participants to draw a diagram showing the shortest path for a commit

to be merged, including any commits that are related to it, or are necessary for

the integration. Participants were given 10 minutes to draw the diagram, working

with GitK and the git command line interface. The correct answer should look

something like the Merge-Tree for that commit. The drawing from task 1 is then

referred to in task 2 and 3. Building on the conceptual understanding built in task

1, task 2 and 3 ask the participant to determine how many commits are related,

and how many merges. The order that task 2 and 3 are presented to participants is

randomized between participants, to remove order bias, although it shouldn’t matter

as both questions are designed to build off of task 1 and the conceptual understanding

constructed from analyzing the DAG visualization of that commit for 10 minutes.

These questions enable us to find issues when users are comprehending the DAG

visualizations.

The diagrams drawn by the participants in the first task help provide insight

about how the participants are interpreting the DAG. I looked for patterns in the

drawings to see if common issues arose, providing qualitative information about issues

in comprehension. The results from task 2 and 3 are numerical results, the number

of commits that are related, and the number of merges. These numbers are directly

comparable with the correct numbers.

6.1.3 Part 2: Summarization Study

The summarization portion of the study compares the visualization and summariza-

tion capabilities of Linvis and Gitk to determine if the visualization of the Merge-Tree

is capable of providing a better understanding of the events in repository. This por-

tion of the study requires the participants to switch between both Use-Case 1 and
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Use-Case 2 strategies. The participants are provided an commit, since their goal is to

summarize information about the entire Merge-Tree, they must navigate to the root

node, making use of features for Use-Case 1. Once they are at the root, the partici-

pant must be able to summarize information about the authors, files, and modules.

The tasks are outline in Table 6.2.

Table 6.2: Summarization Tasks

Task Set Task Description

Merge T4 What is the series of merges involved with merging this commit?
T5 What other commits are merged?

Authorship T6 How many authors are involved?
T7 Who contributed the most changes?

Files T8 How many files were modified?
T9 Which file had the most changes?

Modules T10 Which modules does this Merge-Tree involve?

For each task, where specified, four statistical tests are applied. The first test

determines if the results from the two commits are from the same distribution. If

they are, it indicates that the results can be aggregated, otherwise, the results must

be analyzed for each commit separately.

The following are the null hypotheses for the first test for each recorded metric:

• There is no difference in the correctness of the response between merge sizes

• There is no difference in the accuracy of the response between merge sizes

• There is no difference in the time taken to respond between merge sizes.

The three remaining tests measure the difference in correctness, accuracy, and

time between the results for Linvis and Gitk. The null hypotheses for each are as

follows:

• Linvis does not have an impact on the correctness of the response

• Linvis does not have an impact on the accuracy of the response

• Linvis does not have an impact on the time taken to respond

The tasks are split into four task sets, based on the type of information that the

task is investigating. The Merge tasks set focuses on detailed information about the
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topology of the merge itself, looking at the specific merges and commits involved in

the integration. Task T4 asks for the specific merges that merge the commit into the

master branch. These must be the correct merges, and must be in the correct order. I

use the edit distance between the response and the correct answer as a measure of how

correct the response is. Adding new merges, removing extraneous merges, replacing

merges, and swapping the order of merges are of unit cost. An edit distance of 0

indicates a correct answer. Task T5 asks for the other commits that are integrated

with this commit. Again, I use an edit distance-like metric to evaluate the response.

Order doesn’t matter, but the correct commits must be indicated in the response.

Adding commits, replacing commits, and removing commits are of unit cost.

The authorship task set involves finding information about the authors involved

in the merge. Task T6 asks for the number of authors involved in the merge. These

are authors of commits, not merges, as merges in the kernel repository do not in-

clude code, and are used for creating logical separation in commits. The accuracy

is measured as the absolute difference between the response and the correct answer.

Task T7 asks participants to identify the person who was responsible for contributing

the most in the merge. While it is possible that two authors could have contributed

the same number of changes, in the merges for both commits, there is an identifiable

author who contributed the most. The answer to this task can either be correct or

incorrect, so accuracy is not recorded for this task.

The files task set involves finding information about specific files being merged.

Task T8 asks the participant to identify how many files are modified in a merge. Like

task T6, the response to task T8 is a single number, so the accuracy is measured as

the absolute difference between the response and the correct answer. Task T9 asks the

participants to identify which files had the most lines modified in the merge. While

this is similar to task T7, the files in the tree associated with commit 1 had the same

number of changes. For this reason, I use the edit distance between the response and

the correct answer, with addition, removal, and replacement of unit cost.

The modules task set only contains a single task, and involves determining the

modules involved in a merge. Modules, or subsystems, refer to the component of the

kernel that is being modified by a commit. This is not a property that is inherent

to git repositories in general, but a property I noticed in the repository of the Linux

kernel. Commit summaries are prefaced with the module, followed by a colon. For

example the log summary “ALSA: kernel docs: fix sound/core/ kernel-doc” is in the

“ALSA” module.
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The order that the task sets are performed is randomized between participants,

and the order that the tasks within a task set are performed is randomized as well.

This keeps related tasks together, while still mitigating some of the order bias.

6.1.4 User Opinions and Exit Interview

The goal in this part of the study is to expose issues in the underlying assumptions

made while writing Linvis. Two questions were asked in this part of the study,

outlined in Table 6.3. This portion of the study gives the participants to voice their

opinions and observations that may not have been recorded or captured by the rest

of the study.

Table 6.3: User Opinion Questions

Question Description

Q1 Given these tasks again, which tool would you prefer?
Q2 Which aspects of each tool did you like and why?

Question Q1 allows users to express their opinions on tool preference for merge-

summarization tasks. Neither Linvis nor Gitk are perfect, participants may have

complaints or aspects of each tool that they preferred, or aspects that assisted them

in understanding the events in the repository. Question Q2 is meant to address this.

The exit interview is designed with the goal of collecting some information about

our participants, and their experience with version control software and git. Three

questions were asked in the exit interview portion of the study:

• For how long have you used git?

• For what kind of projects have you used git?

• How many commits, files, and collaborators were involved with the largest

repository you have worked with?

6.2 Participant Profile

The study was conducted with 12 participants, all of whom were masters, PhD, or

post-doc researchers in the field of software engineering. The participants had between
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6 months and 10 years experience with git, with the median being 3.5 years. Most

participants had additional experience with SVN and CVS. One of the participants

in the study worked as a release engineer, studying merge practices to determine

the best way to merge branches while minimizing the number of merge conflicts in

SVN repositories. The participants worked with repositories ranging from around

10 commits up to 38000 commits, with the median being 350 commits. Two of the

participants had never collaborated with anyone in a repository, while the rest had

some experience with repositories being modified by multiple people, with the most

being 219. The median number of collaborators was four. Participants had most

experience with personal and academic repositories. Three of the twelve participants

had experience with professional repositories.

All participants have had at least some experience with version control, branching

in repositories, and git. The participants are from the same lab, and each participant

worked with both tools in the study, thus, keeping the sample populations identical for

both tools, with some variation between participants in experience with repositories.

6.3 Results

This section presents the results from the user study. Section 6.3.1 presents the results

for the conceptual tasks. The results for the summarization tasks, performed on both

Linvis and Gitk, are presented in Section 6.3.2. Lastly, the user opinions are presented

in Section 6.3.3.

6.3.1 Conceptual Study Results

The conceptual study is performed with Gitk to determine if the participants are able

to derive a conceptual understanding of how commits are integrated into the master

branch from the graph. Investigating the drawings made in response to task T1, none

of the results from this task are correct. The diagrams for commit 1 tend to resemble a

linked list, showing all of the merges along the master branch. The participants would

generally continue traversing the master branch using either the first parent or the

child links in the Gitk interface, or simply following the branch in the visualization,

until they either hit the branch tag 2.6.29-rc6, or indicated that it was every merge

along the master branch, or stopped at a seemingly arbitrary merge. An example of a

diagram drawn by one participant is shown in Figure 6.4a. This drawing follows the
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DAG backward, working from the commit, through the branch point, and traversing

the DAG toward the initial commit. In another case, the participant was able to

produce the correct drawing using the git command line tools, but then looked at the

DAG visualization in Gitk and continued to draw a linked list, following the merges

along the master branch toward the HEAD node.

11df a3c d2f8 b51e fb5 37b

(a) Example of a diagram drawn for the integration of commit 1

(b) The correct diagram showing the integration of commit 1.

Figure 6.4: An example of a drawn diagram for the integration of commit 2 compared
with the correct answer.

This indicates difficulties identifying the master branch in the visualization. Fur-

thermore, the commit date should provide some indication on which direction the

commits are being merged in, some participants did not understand this from the

Gitk interface. This could be confusion looking at the interface, or in the terminology

surrounding the parent-child relationship.

The resulting diagrams for commit 2 do not show any consistent patterns among

participants. Many diagrams do not show the shortest paths from a commit to the

master branch. Some participants were able to identify the master branch in this

case. These participants had experience with SVN repositories, and were accustomed

to the master branch being the first branch in the graph. In the visualization of the

DAG for commit 2, the master branch returns to the first position in the graph, which

some participants mentioned that this meant it should be the master branch. In this

case, they are correct in that the first line in the visualizations is the master branch

in this case, but the reasoning is not correct. The first branch is not necessarily

the master branch, as is the case with the results from Commit 1, where the master

branch is the third line.
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With some participants, there was confusion about the direction of the parent-

child relationship. In most diagrams, the parents point toward the node of interest.

In this case, the parents point toward the branch point, which is in the opposite

direction of the merge, so the participant would actually need to follow the child to

get to the merge point. The difference is alluded in Figure 3.2 and Figure 3.3. Notice

that in Figure 3.2 that the edges point from the merge toward the commits, and

eventually toward the branch point. Conversely, the edges in Figure 3.3 point from

the commit toward the integrating merge.

One participant was able to identify the path to the master branch, but no par-

ticipants were able to identify the commits that were necessary for integrating the

given commit into the master branch. The diagram drawn is shown in Figure 6.5a,

which shows a possible path for the commit to pass through on the way to the master

branch. While it isn’t the shortest path, it is a possible path. In the diagram, M3

is the merge into the master branch, and start the commit that is being queried.

The diagram includes one other commit that is being merged, but there are three

additional commits that were not included. In the Merge-Tree representation, the

starting commit and the ALSA Fix commit are both merged into M2, while three

others are merged into M1. M1 and M2 are merged directly into the master branch

at M3. In the other cases, the diagrams had little resemblance of the events occurring

in the repository. Some diagrams appeared to be constructed from random commits,

others did not conform to the tree structure as what would be constructed from using

shortest paths.

The results show that participants were closer to the correct number of merges

to integrate commit 2 into the master branch. This is counter-intuitive as commit

2 is from the larger, more complex Merge-Tree. Furthermore, the results show that

they were also closer to determining how many other commits were integrated with

it than with commit 1, shown in as seen in Table 6.4. The results reported in this

table are in number of commits for task T2, and the number of merges for task T3.

Commit 1, which was merged directly without any other related commits, was said

to have a median of 6 related commits. The median number of merges was said to

be between 6 and 7 merges. The correct answer should have been 1, the integrating

merge. There was more disagreement when determining the number of commits, in

both commits. Interestingly, there was more variance in the answers on the smaller

merge tree. The variance in the answers for determining the number of merges was

consistent between both trees.
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M3

M2

ALSA FixM1

start

(a) Example of a diagram drawn for the integration of commit 2. This diagram is
the closest to being a possible representation of the events in the repository, but
miss the other commits involved.

(b) The correct diagram showing the integration of commit 2.

Figure 6.5: An example of a drawn diagram for the integration of commit 2 compared
with the correct answer.

Table 6.4: Variance and Difference between correct answers and user responses in
conceptual tasks in tasks T2 and T3

Task Commit Median Difference Average Difference Answer Variance

T2 Commit 1 5 20 803.43
T3 Commit 1 5.5 7.8 56.18
T2 Commit 2 2 6.22 120.19
T3 Commit 2 1 3.67 48.5
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While the results were closer with the larger Merge-Tree, the merges that were

indicated as being the integrating merges and commits identified as being those inte-

grated with it were incorrect in both cases. For commit 1, many participants indicated

that the entire master branch up to the branch pointer was in the integrating merge.

This dramatically increases the average and variance for commit 1. In the case of

commit 2, participants selected merges and commits a more conservatively, though

many of the selected merges and commits were incorrect, and in some cases appeared

to be randomly selected.

Participants generally took longer to respond to questions about the larger merge

tree, and the time taken was far more variable. The timing results are listed in

Table 6.5. When interpreting these results, it must be noted that participants had

spent 10 minutes working with the merge tree that they were summarizing prior to

answering the questions. These times do not indicate the time to read the DAG, but

the time taken to understand the conceptual image of the events in the DAG. It took

the participants longest to determine the number of commits in both cases, but it

took far longer in the case of commit 2, taking over half a minute.

Table 6.5: Timing Results from the conceptual tasks T2 and T3

Task Commit Median Time (s) Average Time (s) Time Variance (s)

T2 Commit 1 9 53.45 6382
T3 Commit 1 8 26.64 921
T2 Commit 2 35 114.45 58769
T3 Commit 2 15 71.36 32324

Users were able to more closely estimate the number of commits and merges in

the larger tree, but generally took longer than the smaller tree. The tree with a single

node resulted in more variability in the estimate of number of commits.

6.3.2 Summarization Study Results

Merge size does not affect correctness for merges in the first and second quartile

of merge sizes; however, task T5, finding the other commits being integrated, and

task T9, determining which file had the most changes, are very close to the p-value

threshold. The results of the Wilcoxon test on correctness are shown Table 6.6. Most

of the p-values are reasonably far from the threshold of 0.05; however, in tasks T5

and T9, the p-value is within 0.01 of the threshold. Further investigation reveals that
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the differences in the distributions stem from the number of participants who were

incorrect when using Linvis. Inspecting the results from task T5, in Figure 6.6, no

participants provided an incorrect response using Linvis in the small merge, but four

participants provided an incorrect response when using Linvis for the larger merge.

Similarly, the number of incorrect responses increased going from the small merge to

the large merge with Gitk. The split results are similar in task T9.

Table 6.6: Effect of merge size on correctness

Task p-value Conclusion

T4 0.16 Do not reject H0

T5 0.05 Do not reject H0

T6 0.11 Do not reject H0

T7 0.08 Do not reject H0

T8 0.13 Do not reject H0

T9 0.06 Do not reject H0

T10 0.45 Do not reject H0
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Figure 6.6: Difference between commits in the correctness of responses to task T5.

The results do not indicate that there is a difference in the distributions between

the merge sizes, although one might arise with tasks T5 and T9 with more samples,

the results for both merges are combined. The McNemar test is applied to determine

if Linvis has an effect on the correctness. The results of the McNemar test are

presented in Table 6.7. For each task, except for task T10, determining which modules

are involved in a merge, Linvis has an effect on the results. Inspecting the results in

Figure 6.7 shows that Linvis effects results in a positive way, helping users to correctly



77

Gitk Linvis

Incorrect
Correct

T4

0
5

10
15

20
25

Gitk Linvis

Incorrect
Correct

T5

0
5

10
15

20
25

Gitk Linvis

Incorrect
Correct

T6

0
5

10
15

20
25

Gitk Linvis

Incorrect
Correct

T7

0
5

10
15

20
25

Gitk Linvis

Incorrect
Correct

T8

0
5

10
15

20
25

Gitk Linvis

Incorrect
Correct

T9

0
5

10
15

20
25

Gitk Linvis

Incorrect
Correct

T10

0
5

10
15

20
25

Figure 6.7: Aggregated Correctness of the summarization results
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identify properties about the merge. In task T10, it is also evident that participants

were able to determine the module involved using both tools.

Table 6.7: Aggregated Correctness Results comparing Linvis and Gitk

Task χ2 p-value Conclusion

T4 12.07 0.0005 Reject H0

T5 11.08 0.0007 Reject H0

T6 13.07 0.0003 Reject H0

T7 10.08 0.0015 Reject H0

T8 12.07 0.0005 Reject H0

T9 11.08 0.0009 Reject H0

T10 3.13 0.0771 Do not reject H0

Merge size does not affect accuracy in any of the tasks, as seen in Table 6.8.

The results in task T9 are very close to the threshold. Inspecting the distributions

in Figure 6.8, the distribution for Linvis appears to be different in the two commits.

In commit 1, there is no variance, the entire distribution is at 0 files from the correct

answer. In commit 2, the 3rd quartile spans from 0 files up to 1 file from the correct

answer, and the fourth quartile, from 1 file to 2 files. This is consistent with the

results found for correctness, although, unlike with correctness where task T5 showed

more difference between merge sizes, task T9 shows more difference between merge

sizes with accuracy. This indicates that those who were incorrect, were also further

from the correct answer in the larger merge than the small merge in T9 than in task

T5.

Table 6.8: Effect of merge size on accuracy

Task p-value Conclusion

T4 0.97 Do not reject H0

T5 0.08 Do not reject H0

T6 0.21 Do not reject H0

T8 0.13 Do not reject H0

T9 0.06 Do not reject H0

T10 0.22 Do not reject H0

The results do not indicate a difference in the accuracy distributions between

commits. Again, this could change in tasks T5 and T9 with a larger sample size. The

results for both merges are combined. The Wilcoxon test and Cliff’s Delta effect size
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Figure 6.8: Difference in accuracies in responses to task T9 between Commit 1 and
Commit 2.
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are applied to each to determine if there is a difference in the accuracies of responses

to the tasks between tools. The results of the tests are presented in Table 6.11. In

all cases, there is a difference in accuracies between when the participants use Linvis

versus Gitk. In all cases except for task T9, which files had the most changes, and

T10, which modules were involved, there was a large effect in favour of Linvis. In

task T9, there was a medium effect, and T10, a small effect. Looking at the results

depicted in Figure 6.9, this makes sense. The variance in the accuracies of responses

of Gitk is much smaller in tasks T9 and T10 than in the other tasks, furthermore,

the median is much closer to zero than in the other tasks. In task T10, only the third

and fourth quartiles are beyond 0, which indicates that participants were generally

correct when using Gitk to determine the module. This is also consistent with the

results measuring the correctness.

Table 6.9: Aggregated Accuracy results, including the Wilcoxon p-values and Cliff’s
Delta Effect size

Task p-value Delta Est. Conclusion Effect

T4 0.00017 0.596 Reject H0 Large
T5 0.00019 0.616 Reject H0 Large
T6 0.00000 0.675 Reject H0 Large
T8 0.00079 0.534 Reject H0 Large
T9 0.01195 0.412 Reject H0 Medium
T10 0.00479 0.318 Reject H0 Small
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Figure 6.9: Aggregated Accuracy of the summarization results

The results indicate that in all tasks except for task T7, who contributed the most

changes, merge size did not have a significant impact on the time taken to respond.

The results are presented in Table 6.10.

Inspecting the results from task 7, depicted in Figure 6.10, the primary difference

stems from the time used to respond when using Linvis. Participants much longer
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Table 6.10: Effect of merge size on response time

Task p-value Conclusion

T4 0.99 Do not reject H0

T5 0.90 Do not reject H0

T6 0.92 Do not reject H0

T7 0.01 Reject H0

T8 0.99 Do not reject H0

T9 0.70 Do not reject H0

T10 0.77 Do not reject H0
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to produce a response for the larger merge while using Linvis than they did for the

smaller merge. Comparing this with the timing results for task T8, in Figure 6.11

where participants took very little time to respond for both merges. Participants took

considerably less time using Linvis than they did with Gitk.
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Figure 6.10: Difference in time taken to respond to task T7 between merge sizes

The results do not indicate that there is a difference in the time taken to respond

between merge sizes for the other tasks. In all tasks, except for T7, Linvis does have

a statistically significant impact on the time taken to respond. Linvis has a large

impact on the time taken to respond to tasks T4, T8, T9, and T10, determine the

merges that led to integration, the number of files modified, which files had the most

changes, and the modules involved. Linvis had a medium effect on the time taken to

respond to tasks T5 and T6, what other commits are integrated with this commit,

and the other number of authored involved. The direction of the effect is visible in

Figure 6.12.

The results of task T7 in Figure 6.10 show that Linvis appears to have an effect.

The Cliff’s delta effect size indicates that, in the case of the medium-sized merge, there

is a medium effect. The Wilcoxon test, however, indicates that the null hypothesis

should not be rejected, or at least that there is inconclusive evidence to show that

there is a difference. This is likely due to the sample size; the Wilcoxon test is related

to the sample size, while the delta effect size is not. Since the results in task T7

are not aggregated, the number of samples is effectively cut in half, from 22 down to
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Figure 6.11: Difference in time taken to respond to task T8 between merge sizes
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Figure 6.12: Aggregated Time to respond to summarization tasks
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11, which is not enough to have confidence that the results are representative of the

population. The effect size says that if our sample is representative of the population,

this is the impact that could be expected. The results of the tests are presented in

Table 6.11.

Table 6.11: Aggregated time results, including the Wilcoxon p-values and Cliff’s Delta
Effect size

Task p-value Delta Est. Conclusion Effect

T4 0.0006 0.605 Reject H0 Large
T5 0.0241 0.399 Reject H0 Medium
T6 0.0254 0.388 Reject H0 Medium

T7
0.2586 0.289 Do not reject H0 Small
0.1146 0.405 Do not reject H0 Medium

T8 0.0018 0.545 Reject H0 Large
T9 0.0002 0.667 Reject H0 Large
T10 0.0002 0.649 Reject H0 Large

To summarize, Linvis is able to assist users determine the series of merges a

commit passes through to integration, the other commits integrated with it, the

number of authors, how many files were modified, and which file had the most changes

more quickly and accurately than with Gitk. Linvis does not have an impact on the

accuracy when determining the modules involved in the merge, but does have an

impact on the time taken to respond. Linvis does not appear to have an impact

on the time take to determine who contributed the most changes, but does have

an impact on accuracy and correctness. Interestingly, there is a medium effect on

the time taken to respond in the case of the larger merge, but little confidence in

this effect. More participants are required in order to determine if Linvis makes a

difference.

6.3.3 User Opinions

Among the 12 participants, there was nearly unanimous agreement that for concep-

tual understanding and summarization tasks, Linvis was easier to use than Gitk. The

participants cited the ability to abstract information about the merge from the clean

summarization tables and simple visualizations as the primary reasons for preferring

Linvis to Gitk. Three participants suggested that someone with a professional under-

standing of Gitk and the git command-line may be able to extract a conceptual un-
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derstanding from the DAG visualization and perform the summarization tasks. One

of these three participants said that they would prefer to have both tools available,

as they are able to complement each other. This is discussed further in Section 7.3.
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Chapter 7

Discussion

This chapter provides further discussion on the results and observations from the

study evaluating Linvis. Included are observations that could lead to improvements

in the current DAG visualizations, and the comments from a release manager.

7.1 Interpreting the Results

Overall, the results indicate that Linvis is able to improve the correctness and ac-

curacy of responses to various summarization tasks, and decrease the time taken to

produce the results. This doesn’t come as a surprise since the goal of the Merge-Tree

model and the visualizations in Linvis are to provide better conceptual understanding

and summarizations of merges, while Gitk and DAG visualizations are designed to

show the topology of the entire repository. Since there are no other tools for showing

how a commit is integrated, and the topology of the DAG does contain this infor-

mation, the DAG visualization is used as a proxy to show how a commit reaches the

master branch.

One area of interest is the comparison of Linvis and Gitk on correctness in task

T10, determining the modules modified in a merge. Again, modules are not inherent

to Git and are a property of the commits in the Linux repository, the module is found

in the summary of the commit logs. In this task, the difference in the number of

correct responses between Linvis and Gitk was not statistically significant, and, while

significant, the effect on accuracy was also small. This is interesting because Linvis

provided this information directly, while users would have to look at the commit logs

to determine this information from Gitk. Further inspection of the merges show that
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this was the only task where the correct answer was in the commit that was provided,

and actually required no aggregation of the results.

Another area of interest are the time results for task T7. This is the only task

where merge size had a significant impact on the performance of the participants.

There was not a statistically significant difference in the time taken to respond to

this task between the two tools; however, the effect size indicates that the tool has a

medium effect on the time taken to respond. This is likely due to the sample size. In

the other tasks, the responses 11 responses for both merges were combined, effectively

doubling this number, creating 22 samples. Since there was a difference in the time

taken to respond given the merge size, the results had to be analyzed separately.

11 samples is quite small, and is likely not enough to have a 95% confidence in the

results.

Ultimately, the positive results are not entirely unexpected. Linvis is specifically

designed for handling the tasks that we presented to the participants in our study.

Ideally, we would be able to compare against another tool that is specifically designed

for the same tasks; however, one does not currently exist. Instead, we compare the

results between Linvis, and the tool that is currently in use for these tasks, Gitk.

7.2 Study Observations

Identifying the master branch was an issue that consistently came up among all par-

ticipants during the study. Some participants assumed that the first line in the DAG

visualization indicated the master branch, while others assumed that the next branch

tag indicated the master branch. The DAG visualization provides no indication of

which branch is the master branch. Furthermore, the visualization in Gitk is not

consistent, branch colors and positions change between runs; identifying the branch

once does not guarantee that it is identifiable after restarting Gitk.

Had the participants been able to easily identify the master branch, the results

from the study would likely be very different. This would be most prominent in the

summarization portion of the small merge, since summarizing a single item is trivial.

The issue was identifying that there was only a single item. With more than 25% of

the merges into Linux being single-commit merges, it is important that users are able

to identify them and understand the changes being made within them. The structure

of a single-commit tree is identical to the structure of a flat tree, all commits are

merged directly into the master branch, passing through no other merges on the way.
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Flat trees are the most common form of tree in the kernel repository. To improve the

visualization of the DAG for providing an effective visualization for summarization

and comprehension of flat trees, it would likely be sufficient to indicate which line

represents the master branch. For the non-flat trees, a more powerful structure would

likely be necessary, such as the Merge-Tree.

7.3 Comments From a Release Manager

One of the participants in the study had worked as a release manager for more than

three years, working with both SVN and CVS repositories. The goal of a release

manager is to determine how to merge the branches of a repository in such a way

that it minimizes merge conflicts and maintains the meaning of the underlying source

code. This section contains insights from this participant, providing comments on

ways that could improve Linvis and the Merge-Tree model.

Contributors making merges need to understand more than just what merges a

commit was collected into before reaching the repository of the contributor. It is also

important to understand the order that the related commits were made, as the order

tells the story of what the developer was thinking as they were writing the changes.

The visualization of the Merge-Tree in Linvis does not order the commits, randomly

ordering them in each level as atomic units.

This is the primary reason behind why this participant would ask to use both tools

simultaneously. Linvis is able to help with the aggregation of the information, and

provide a better understanding of the next merge involved in integrating this commit,

but the DAG visualization in Gitk provides the full story of the commit instead of

hiding it behind a layer of abstraction.

The algorithm is capable of retaining information about which commit comes next

on the path to the master branch. The adjustment simply requires that the returning

commit be passed with the depth, next merge, and integrating merge. The update

rules are the same for the next merge and integrating merge, so no other changes are

required. Then instead of using the next merge toward integration, the next commit

should be used in the visualization.

The comments from this participant were very insightful, and will help to improve

the Merge-Tree model.
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7.4 Threats to Validity

While precautions were taken to mitigate threats to the validity of this research, these

threats must be taken into account when considering the results. The threats, the

mitigation techniques, and the steps to minimize other threats are provided in this

section.

7.4.1 Internal Validity

This section provides a summary of areas where bias may have influenced the results

of the study and the steps taken to mitigate these issues. The biases may impact

the design of the study, how the questions are presented, and how the results are

interpreted. To ensure that this research was conducted in a way that was ethical,

the study was approved by the university ethics board.

The design of the study has an impact on the results. I needed to make consid-

erations about the merges that would be used during the study and the tasks that

the participants were working with. The merges need to be representative of what

is found in the Linux kernel repository, but must also not be too large such that it

overwhelms the participants. The task selection is another challenge in this study,

the goal is to limit the bias toward either tool while attempting to determine if Linvis

has the desired effect.

The tasks themselves are biased in favour of Linvis, as the tool is specifically de-

signed for answering questions surrounding conceptual understanding of how commits

are merged. Ideally, we could compare Linvis with another tool designed for the tasks

specified, but such a tool does not exist. Instead, we compare against the tool that

is currently in use for performing these tasks. The original thesis statement must be

softened to accommodate this change though.

How the study is conducted can impact the results. The study has two manipu-

lated variables, the tool being used and the number of commits being merged. The

order that people work with these will have an impact on the results. As a means

of combating the resulting order bias, the order that commits were analyzed, tasks

performed, and tools used was randomized for each participant. To minimize the risk

that an error is introduced by the randomization, a script was used to generate the

exact text for each experiment. While this method proved to be very useful, I omitted

one task during the course on one study. As a result, the information collected from

this participant were removed from the analysis and final results.
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There are many merges into the master branch of the repository. The number

of commits being merged range from one to more than 6000. The goal is to select

merges that do not give an advantage to either tool, are representative of the merges

found in the repository, and are merging a different number of commits. The first

commit studied came from a merge that was in the first quartile. All of the merges

in the first quartile were merging only a single commit. One of these merges was

randomly selected from the data set using a python script to avoid any biases. The

first and second quartiles were selected to avoid overwhelming the participants. From

prior experience, Gitk does not summarize the changes at a merge. To summarize

the changes at a merge, a developer needs to visit each commit that is being merged

and record the desired metric. For small merges, this is feasible. With large merges,

this would become heavily burdensome on the participants of the study.

This biases the results in favour of the tool that is better-able to visualize small

merges. Due to this bias, I had hypothesized that Gitk and Linvis would have nearly

identical results for the merge containing only a single commit, while the results would

be in favour of Linvis for the second commits. This was not the case, participants had

a difficult time discerning which commits were being merged in both cases. Based on

the comments and behaviours exhibited while performing the tasks, I don’t believe

that increasing the number of commits will improve the results of Gitk.

The main issue with Gitk appeared to stem from the difficulty in determining the

set of commits that belonged to a merge. The answers provided by participants to

earlier tasks were not taken into account when evaluating the correctness or accuracies

to following tasks. The results of an incorrect answer may impact the results of the

tasks that followed. If the participant was unable to determine the correct commits

that were being merged, then none of the summarizations would be correct, even if

the response was correct given the commits they identified. A future study could

mitigate this by providing the correct set of commits that are being merged between

the conceptual and summarization task sets to limit the propagation of errors.

7.4.2 External validity

While many online git resources, git graphical clients, and the git command line pro-

vide visualizations of the DAG, many participants were unfamiliar with the DAG.

While other tools than Gitk and the command line may provide better summariza-

tions and different visualizations, I am not aware of any. I investigated the use of
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other GUI tools on the git website, but none were able to produce visualizations for

repositories that are at the size of the Linux kernel repository, except for Gitk and the

git command line at the time of the study. While this may have had an effect on the

results, the tools listed on the website provide a very similar visual DAG metaphor

to the visualization in Gitk.

The participants in the study were students, some with industrial experience.

Most participants had worked with relatively few collaborators on academic projects.

Many of the participants had worked with relatively large repositories while perform-

ing a research study. Even though the participants have worked with large repositories

during the course of their research, professional developers are the target audience

of this tool, so working with professional developers would provide more meaningful

results.

7.5 Limitations

The model is designed with the Linux repository in mind. The viability of Merge-

Trees to provide useful and accurate information relies on a few properties of the

underlying repository. The repository must use a branch and merge structure. Some

repositories, like the OCaml repository, commit directly into the master branch. At

release time, a branch is created for the version being released. Patches to the version

are added as necessary. The release branch is never merged back into the master

branch. Since Merge-Trees are designed to show how a commit is integrated into the

master branch, an Merge-Tree will not help with a repository with this structure.

Repositories cannot have foxtrots. A foxtrot confounds the master branch, making

it impossible to properly determine where the integrating merge occurs. The algo-

rithm will continue to process repositories containing foxtrots; however, the resulting

Merge-Trees will not be meaningful.

Repositories should limit the use of fast-forward merging. The goal of Merge-Trees

is to help understand how commits are grouped together, which is done at a merge

commit. Fast-forward merges splice the changes directly into the underlying branch,

hiding the fact that there was ever a branch. The original branch information is not

retrievable and will result in many flat trees, where everything is merged directly into

the master branch, or worse, the master branch contains only individual commits.
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7.6 Future Work

In the evaluation of Linvis, it was noted that some important information is lost in

the conversion from the graph to the Merge-Tree. Commits usually build on the

changes of it’s ancestors; the changes in one commit usually build on the changes of

the commits that came earlier in the graph. The proposed Merge-Tree model does

not maintain the order of the commits in the graph, only that they share a merge.

This leaves space for additional research to build on the Merge-Tree, extending the

model to preserve the order of the commits in the graph. This extension would involve

deciding on new visualizations, and performing a new study.

11
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Figure 7.1: Updating the Merge-Tree shows the order that commits are created, while
retaining the merges that the commits pass through.

In our model, the trees are short, but very wide, as there are usually very few

merges that a commit will pass through, but there may be many commits that build

on it before finally having the changes merged. In the current structure, all of these

commits are on the same level, as they are merged together, which contributes to

the short and wide structure. In the updated structure, the commits won’t be on

the same level, the parent of the commit will be the next commit in the chain. This

structure leads to tall and narrow trees. The list-tree and Reingold-Tilford tree would

likely visualize these effectively. The list-tree would only need to order the elements

according to the order of the commits, but would otherwise be left unchanged. The

Reingold-Tilford tree would become very tall, but this does not present any major
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technical challenges. The pack tree visualization is specifically designed for wide and

short trees. If a node is the only child of it’s parent, the parent node is not drawn.

With the structure of the trees, this does not present any major issues as there are

generally multiple commits being merged by a given merge. If the model is adjusted

so that the parent of a commit is the next commit on the path toward the master

branch, this property changes. A commit may have one or zero children, so only

the first commit of a branch will be rendered by the pack tree, omitting most of the

information. An example of what the model may look like is shown in Figure 7.1.

Changing the model to include information about how commits are ordered will

have an impact on how it is rendered. Some of the visual metaphors of the tree will

be impacted more severely than others. A re-evaluation is required to verify that the

updated model and new visualizations still fulfill the original goal, to enable people to

easily determine the merges that a commit passes through toward being integrated,

and the other commits that are integrated with it.

The work in this thesis addresses an issue with comprehending visualizations of

the DAG. At no point is it verified that the work is applicable to the problems faced

by practitioners in industry. While this is due to accessibility, future work should

perform a study to verify that the Merge-Tree model, and the visualizations of the

model are able to help solve issues in industry.
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Chapter 8

Conclusion

The visualization of the DAG of a git repository is difficult to comprehend in large

projects. This thesis investigates user comprehension of the DAG visualization in

the Linux repository, and presents the design of a new model and a tool built from

the model, with the goal of assisting users with comprehending how a commit is

integrated into the master branch. Very few tools have the explicit goal of showing

the topology of the repository. No academic tools that I am aware of attempt to do

this. Most of the non-academic tools provide a visualization of the entire DAG, if

they are able to produce a visualization at all. There is little variance in the DAG

visualizations between these tools, which leaves room for improvement.

One major issue in understanding the DAG visualizations is the amount of in-

formation being presented. The DAG visualization provides information about all

of the commits, but in the case of the Linux repository, the integrating merges in

the master branch work nearly independently of each other. Only the commits that

are merged together are related to each other are relevant, while commits that are

not included in that merge are unrelated. The Linux repository adds thousands of

commits per release, but only a few of these are related to each other. 50% of the

merges are merging at most seven commits.

The Merge-Tree model takes advantage of this structure, breaking the commits

into groups based on the merge into the master branch. The commits are then

organized into trees, the parent of a node is the next merge on the way to integration,

which shows the path that a commit takes to reach the integrating merge into the

master branch. A commit may pass through multiple merges on the way to the

master branch. An algorithm is devised, and evaluated. Through the evaluation of

the algorithm, I found some interesting events in the repository. The logs for the
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integrating merges contain the number of commits being integrated, and a listing of

a subset of the commit log summaries being merged. This practice was put into place

on September 4, 2007. A foxtrot merge occurred on December 12, 2006. I identified

507 merges, of the 1537 merges made prior to this date, that were confounded by the

foxtrot.

I constructed a tool, Linvis, around the Merge-Tree model. Leveraging the model,

Linvis is able to provide simpler visualizations and summarize additional information

about the commits being merged, including the authors involved and files modified.

Through Linvis, I am able to further evaluate the effectiveness of the visualizations

of the Merge-Tree compared to the visualizations of the DAG.

Using Linvis, I conducted a 12-user study with two goals. One goal is to verify

the assumption that the visualizations of the DAG are not able to convey information

about how a commit is integrated into a project. The other goal is to compare the

visualizations and summarizations from the DAG in git and Gitk to the visualizations

and summarizations from the Merge-Tree. The participants were unable to accurately

determine how commits were integrated from the DAG visualization. Furthermore,

the visualizations and summarizations in Linvis helped the participants answer ques-

tions about a merge more accurately and more quickly. Further information gathered

from the study indicated that important information that was present in the DAG

visualizations was lost in the Merge-Tree model. The order of commits with regard

to each other tell the story of why a developer is making changes. This information

is lost in the Merge-Tree, but is retained in the DAG visualizations.

Merge-Trees are a novel means of processing git repositories to be visualized and

summarized in a more effective way. Participants in our study found visualizations of

the Merge-Tree to be more enjoyable for summarization tasks than the visualizations

of the DAG. The visualizations of the Merge-Tree model help users to more accurately

summarize information about merges more quickly. We cannot definitively defend

the original thesis statement as there are no other tools that attempt to provide

information about how commits are integrated. Instead, we defend the revised thesis

statement. The findings of the study show that the visualizations of the Merge-

Tree are more effective at providing a conceptual understanding of how a commit is

integrated and what other commits are integrated with it than tools that are currently

available.
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